CFP last date
20 January 2025
Reseach Article

CBVR and Classification of Video Database–Latest Trends, Methods, Effective Techniques, Problems and Challenges

by Mohd. Aasif Ansari, Hemlata Vasishtha
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 125 - Number 6
Year of Publication: 2015
Authors: Mohd. Aasif Ansari, Hemlata Vasishtha
10.5120/ijca2015905932

Mohd. Aasif Ansari, Hemlata Vasishtha . CBVR and Classification of Video Database–Latest Trends, Methods, Effective Techniques, Problems and Challenges. International Journal of Computer Applications. 125, 6 ( September 2015), 28-37. DOI=10.5120/ijca2015905932

@article{ 10.5120/ijca2015905932,
author = { Mohd. Aasif Ansari, Hemlata Vasishtha },
title = { CBVR and Classification of Video Database–Latest Trends, Methods, Effective Techniques, Problems and Challenges },
journal = { International Journal of Computer Applications },
issue_date = { September 2015 },
volume = { 125 },
number = { 6 },
month = { September },
year = { 2015 },
issn = { 0975-8887 },
pages = { 28-37 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume125/number6/22437-2015905932/ },
doi = { 10.5120/ijca2015905932 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:15:20.054633+05:30
%A Mohd. Aasif Ansari
%A Hemlata Vasishtha
%T CBVR and Classification of Video Database–Latest Trends, Methods, Effective Techniques, Problems and Challenges
%J International Journal of Computer Applications
%@ 0975-8887
%V 125
%N 6
%P 28-37
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Content Based Video Retrieval (CBVR) has been increasingly used to describe the process of retrieving desired videos from a large collection on the basis of features that are extracted from the videos. The extracted features are used to index, classify and retrieve desired and relevant videos while filtering out undesired ones. Videos can be represented by their audio, texts, faces and objects in their frames. An individual video possesses unique motion features, color histograms, motion histograms, text features, audio features, features extracted from faces and objects existing in its frames. Videos containing useful information and occupying significant space in the databases are under-utilized unless CBVR systems capable of retrieving desired videos by sharply selecting relevant while filtering out undesired videos exist. Results have shown performance improvement (higher precision and recall values) when features suitable to particular types of videos are utilized wisely. Various combinations of these features can also be used to achieve desired performance. In this paper a complex and wide area of CBVR and CBVR systems has been presented in a comprehensive and simple way. Processes at different stages in CBVR systems are described in a systematic way. Types of features, their combinations and their utilization methods, techniques and algorithms are also shown. Various querying methods, some of the features like GLCM, Gabor Magnitude, algorithm to obtain similarity like Kullback-Leibler distance method and Relevance Feedback Method are discussed. Functioning of Support Vector Machines (SVM) is discussed which are vital for automatic classification of videos.

References
  1. Weiming Hu, Nianhua Xie, Li Li, Xianglin Zeng, Maybank S., "A Survey on Visual Content-Based Video Indexing and Retrieval", IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41-6,797-819, 11/2011
  2. Liang-Hua Chen, Kuo-Hao Chin, Hong-Yuan Liao, "An integrated approach to video retrieval", Proceedings of the nineteenth conference on Australasian database-Volume 75, 49–55, 2008
  3. Hong Jiang Zhang, Jianhua Wu, Di Zhong, Stephen W. Smoliar, "An integrated system for content-based video retrieval and browsing", Pattern Recognition, Pattern Recognition Society, Published by Elsevier Science Ltd., Vol. 30, No. 4, pp. 643~658, 1997
  4. B V Patel, B B Meshram, "Content Based Video Retrieval Systems", International Journal of UbiComp, vol 3, No. 2, pg 13-30, 2012
  5. Yining Deng, B.S. Manjunath, "Content-based Search of Video Using Color, Texture, and Motion", IEEE, pg 534-537, 1997
  6. Ja-Hwung Su, Yu-Ting Huang, Hsin-Ho Yeh, Vincent S. Tseng , "Expert Systems with Applications", 37, pg 5068-5085, 2010
  7. T.N.Shanmugham, Priya Rajendran, "An Enhanced Content-Based Video Retrieval System Based on Query Clip", International Journal of Research and Reviews in Applied Sciences, Volume 1, Issue 3, 2009
  8. Ritendra Datta, Dhiraj Joshi, Jia Li, James Z. Wang, "Image Retrieval: Ideas, Influences, and Trends of the New Age", ACM Computing Surveys, Vol. 40, No. 2, article 5, pg 1-60, 2008
  9. Nicu Sebe, Michael S. Lew, Arnold W.M. Smeulders, "Video retrieval and summarization", Computer Vision and Image Understanding, vol. 92, no. 2-3, pg 141-146, 2003
  10. C. V. Jawahar, Balakrishna Chennupati, Balamanohar Paluri, Nataraj Jammalamadaka, "Video Retrieval Based on Textual Queries", Proceedings of the Thirteenth InternationalConference on Advanced Computing and Communications, Coimbatore, Citeseer, 2005
  11. Alexander G. Hauptmann, Rong Jin, and Tobun D. Ng, "Video Retrieval using Speech and Image Information", Electronic Imaging Conference (EI'03), Storage Retrieval forMultimedia Databases, Santa Clara, CA, January 20-24, 2003.
  12. Steven C.H. Hoi, Michael R. Lyu, "A multimodal and multilevel ranking frame work for content-based video retrieval", ICASSP, 2007
  13. M. Petkovic, W. Jonker, "Content-Based Video Retrieval by Integrating Spatio-Temporal and Stochastic Recognition of Events", Proceedings of IEEE Workshop on Detection and Recognition of Events in Video, pp. 75-82, 2001.
  14. Ara V. Nefian, Monson H. Hayes III, "Hidden Markov Models for Face Recognition", IEEE International Conference on Acoustics, Speech and Signal Processing, 1998
  15. V.S. Tseng, J-H Su, J.-H. Huang, & C-J. Chen,"Integrated mining of visual features, speech features and frequent patterns for semantic video annotation." IEEE Transactions on Multimedia, 10(1), 2008
  16. Virga, P., Duygulu, P., "Systematic evaluation of machine translation methods for image and video annotation", In Proceedings of the fourth international conference on image and video retrieval (pp. 487–496), Singapore, 2005.
  17. G. Lavee, E. Rivlin, and M. Rudzsky, “Understanding video events: A survey of methods for automatic interpretation of semantic occurrences in video,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 39, no. 5, pp. 489–504, Sep. 2009.
  18. J. Sivic and A. Zisserman, “Video Google: Efficient visual search of videos,” in Toward Category-Level Object Recognition.. Berlin, Germany: Springer, pp. 127–144, 2006.
  19. G. Y. Hong, B. Fong, and A. Fong, “An intelligent video categorization engine,” Kybernetes, vol. 34, no. 6, pp. 784–802, 2005.
  20. Y. Wu, Y. T. Zhuang, and Y. H. Pan, “Content-based video similarity model,” in Proc. ACM Int. Conf. Multimedia, pp. 465–467, 2000.
  21. A. Anjulan and N.Canagarajah, “Aunified framework for object retrieval and mining,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 1, pp. 63–76, Jan. 2009.
  22. W. M. Hu, D. Xie, Z. Y. Fu, W. R. Zeng, and S. Maybank, “Semantic based surveillance video retrieval,” IEEE Trans. Image Process., vol. 16, no. 4, pp. 1168–1181, Apr. 2007.
  23. N. Dimitrova, L. Agnihotri, and G. Wei, “Video classification based on HMMusing text and faces,” in Proc. Eur. Signal Process. Conf., Tampere, Finland,pp. 1373–1376, 2000
  24. M. Roach, J.Mason, L.-Q. Xu, and F. Stentiford, “Recent trends in video analysis: A taxonomy of video classification problems,” in Proc. Int. Assoc. Sci. Technol. Develop. Int. Conf. Internet Multimedia Syst. Appl., Honolulu, HI, pp. 348–354, Aug. 2002.
  25. D. Brezeale and D. J. Cook, “Automatic video classification: A survey of the literature,” IEEE Trans. Syst., Man, Cybern., C, Appl. Rev., vol. 38, no. 3, pp. 416–430, May 2008.
  26. Y. Yuan, “Research on video classification and retrieval,” Ph.D. dissertation, School Electron. Inf. Eng., Xi’an Jiaotong Univ., Xi’an, China, pp. 5–27, 2003.
  27. A. M. Ferman, A. M. Tekalp, and R. Mehrotra, “Robust color histogram descriptors for video segment retrieval and identification,” IEEE Transactions on Image Processing, Vol. 11, No. 5, pp 497-508, 2002.
  28. B. Erol, and F. Kossentini, “Shape-based retrieval of video objects,” IEEE, Trans. on Multimedia, Vol. 7, No. 1, pp 179-182, 2005.
  29. C.W. Ngo, T.C. Pong, H.J. Zhang, “Motion-based video representation for scene change detection,” Int. Journal Computer Vision, pp 127-142, 2002.
  30. L. Chen and T.S. Chua, “A match and tiling approach to content-based video retrieval,” Proc. ICME, pp. 301-304, 2001.
  31. J. Meng, Y. Juan, S.F. Chang, "Scene Change Detection in a MPEG Compressed Video Sequence", SPIE Symposium on Electronic Imaging: Science and Technology - Digital Video Compression: Algorithms and Technologies, SPIE Vol. 2419, San Jose, Feb. 1995.
  32. Y. Wu, Y. T. Zhuang, and Y. H. Pan, “Content-based video similarity model,” in Proc. ACM Int. Conf. Multimedia, pp. 465–467, 2000.
  33. H.B.Kekre, Sudeep D. Thepade, “Boosting Block Truncation Coding using Kekre’s LUV Color Space for Image Retrieval”, WASET International Journal of Electrical, Computer and System Engineering (IJECSE), Volume 2, Number 3, pp. 172- 180, Summer 2008.
  34. R. Visser, N. Sebe, and E. M. Bakker, “Object recognition for video retrieval,” in Proc. Int. Conf. Image Video Retrieval, London, U.K., pp. 262–270, Jul. 2002.
  35. J. Sivic, M. Everingham, and A. Zisserman, “Person spotting: Video shot retrieval for face sets,” in Proc. Int. Conf. Image Video Retrieval, pp. 226–236, Jul. 2005.
  36. D.-D. Le, S. Satoh, and M. E. Houle, “Face retrieval in broadcasting news video by fusing temporal and intensity information,” in Proc. Int. Conf. Image Video Retrieval, (Lect. Notes Comput. Sci.), 4071, pp. 391–400, Jul. 2006.
  37. H. P. Li and D. Doermann, “Video indexing and retrieval based on recognized text,” in Proc. IEEE Workshop Multimedia Signal Process., pp. 245–248, Dec. 2002.
  38. A. G. Hauptmann, R. Baron, M. Y. Chen, M. Christel, P. Duygulu, C. Huang, R. Jin, W. H. Lin, T. Ng, N. Moraveji, N. Papernick, C. Snoek, G. Tzanetakis, J. Yang, R. Yan, and H. Wactlar, “Informedia at TRECVID 2003: Analyzing and searching broadcast news video,” in Proc. TREC Video Retrieval Eval., Gaithersburg, MD, 2003. Available: http://www-nlpir.nist.gov/projects/tvpubs/tvpapers03/ cmu.final.paper.pdf
  39. J. Zhang, M. Marszałek, S. Lazebnik, C. Schmid, “Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study”, International Journal of Computer Vision, vol.73 no.2, pp.213-238, June 2007
  40. Engin Avci, “An expert system based on Wavelet Neural Network-Adaptive Norm Entropy for scale invariant texture classification”, Expert Systems with Applications: An International Journal, vol.32 no.3, pp.919-926, April, 2007
  41. S. Arivazhagan, L. Ganesan, “Texture segmentation using wavelet transform”, Pattern Recognition Letters, vol.24 no.16, pp.3197-3203, December 2003.
  42. Jeff E. Tandianus, Andrias Chandra, Jesse S. Jin, "Video Cataloguing and Browsing", Proceedings of the Pan-Sydney area workshop on Visual information processing, vol. 11, pp. 39 - 45, 2001.
  43. B.S.Manjunath and W.Y.Ma, "Texture features for browsing and retrieval of image data", IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 18, no. 8, pp 837-842, Aug. 1996.
  44. Swain M.J. and Ballard, B.H. “Color Indexing,” Int’l J. Computer Vision, vol. 7, no. 1, pp. 11-32, 1991.
  45. Hafner, J. Sawhney, H.S. Equitz, W. Flickner, M. and Niblack, W. “Efficient Color Histogram Indexing for Quadratic Form Distance,” IEEE Trans. Pattern Analysis and Machine Intelligence, 17(7), pp. 729-736, July, 1995.
  46. A. Hauptmann, M. Y. Chen, M. Christel, C. Huang, W. H. Lin, T. Ng, N. Papernick, A. Velivelli, J. Yang, R. Yan, H. Yang, and H. D. Wactlar, “Confounded expectations: Informedia at TRECVID 2004,” in Proc. TREC Video Retrieval Eval., Gaithersburg, MD, 2004. Available: http://www-nlpir.nist.gov/projects/tvpubs/tvpapers04/cmu.pdf
  47. Aljahdali, S. Ansari, A. Hundewale, N., "Classification of image database using SVM with Gabor Magnitude", International Conference on Multimedia Computing and Systems (ICMCS), 2012 , vol., no., pp.126,132, 10-12 May 2012
  48. P. Browne and A. F. Smeaton, “Video retrieval using dialogue, keyframe similarity and videoobjects,” in Proc. IEEE Int. Conf. Image Process., vol. 3, pp. 1208–1211,Sep. 2005.
  49. R. Lienhart, “A system for effortless content annotation to unfold the semantics in videos,” in Proc. IEEE Workshop Content-Based Access Image Video Libraries, pp. 45–49, Jun. 2000.
  50. R. Mohan, "Video sequence matching", in Proceedings of International Conference on Acoustic, Speech and Signal Processing, pp. 3697–3700, 1998.
  51. Y. Tan, S. Kulkarni, P. Ramadge, "A framework for measuring video similarity and its application to video query by example", in ‘International Conference on Image Processing’, pp. 106–110, 1999.
  52. M. Naphade, M. Yeung, B. Yeo, "A novel scheme for fast and efficient video sequence matching using compact signature", in ‘SPIE Conference on Storage and Retrieval for Media Database’, pp. 564–572, 2000.
  53. T. Hoad, J. Zobel, "Fast video matching with signature alignment", in ‘ACM SIGMM InternationalWorkshop on Multimedia Information Retrieval’, Berkeley, CA, pp. 262–269, 2003.
  54. W. Ren, S. Singh, "Video sequence matching with spatio-temporal constraints", in ‘International Conference on Pattern Recognition’, pp. 834–837, 2004.
  55. C. Kim, B. Vasudev, "Spatiotemporal sequence matching for efficient video copy detection", IEEE Transactions on Circuits and Systems for Video Technology 15(1), 127–132, 2005.
  56. M. Toguro, K. Suzuki, P. Hartono, S. Hashimoto, "Video stream retrieval based on temporal feature of frame difference", in ‘Proceedings of International Conference on Acoustic, Speech and Signal Processing’, Volume 2, pp. 445–448, 2005.
  57. X. Liu, Y. Zhung, Y. Pan, "A new approach to retrieve video by example video clip", in ‘ACM International Conference on Multimedia’, pp. 41– 44, 1999.
  58. A. Jain, A. Vailaya, X. Wei, "Query by video clip", Multimedia Systems 7, 369–384, 1999.
  59. R. Lienhart, W. Effelsberg, R. Jain, "VisualGREP: A systematic method to compare and retrieve video sequences", Multimedia Tools and Applications 10(1), 47–72, 2000.
  60. S. Kim, R. Park, "An efficient algorithm for video sequence matching using the modified Hausdorff distance and the directed divergence", IEEE Transactions on Circuits and Systems for Video Technology 12(7), 592–596, 2002.
  61. N. Diakopouos, S. Volmer, "Temporally tolerant video matching", in ‘ACM SIGIR Workshop on Multimedia Information Retrieval’, Toronto, Canada, 2003.
  62. Y. Peng, C. Ngo, Q. Dong, Z. Guo, J. Xiao, "Video clip retrieval by maximal matching and optimal matching in graph theory", in ‘International Conference on Multimedia and Expo’, pp. 317–320, 2003.
  63. Y. Peng, C. Ngo, "Clip-based similarity measure for hierarchical video retrieval", in ‘ACM SIGMM InternationalWorkshop on Multimedia Information Retrieval’, pp. 53–60, 2004.
  64. K. Sze, K. Lam, G. Qiu, "A new key frame representation for video segment retrieval", IEEE Transactions on Circuits and Systems for Video Technology 15(9), 1148–1155, 2005.
  65. Y. Ho, C. Lin, J. Chen, H. Liao, "Fast coarse-to-fine video retrieval using shotlevel spatial-temporal statistics", IEEE Transactions on Circuits and Systems for Video Technology 16(5), 642–648, 2006.
  66. H. Luo, J. Fan, S. Satoh, W. Ribarsky, "Large scale news video database browsing and retrieval via information visualization", in ‘ACM symposium on applied computing’, Seoul, Korea, pp. 1086–1087, 2007.
  67. Y. Gong, H. J. Zhong, H. C. Chuan and M. Sakauchi, "An image database system with content capturing and fast image indexing abilities", Proc. Int. Conf. Multimedia Computing and Systems, Boston, Massachusetts, 121-130, 1994.
  68. C. Faloutsos, R. Barber, M. Flicker, J. Hafner, W. Niblack, D. Petkovic and W. Equitz, "Efficient and effective querying by image content", J. lntelL Inf. Systems 3, 231-262, 1994.
  69. A. Pentland, R. W. Picard and S. Scarloff, "Photobook: Tools for content-based manipulation of image databases", Proc. IS and T/SPIE. Conf Storage and Retrieval for Image and Video Databases 11, San Jose, California, 34-47, 1994.
  70. Visionics Corporate Web Site, FaceIt Developer Kit Software, http://www.visionics.com, 2002.
  71. The TREC Video Retrieval Track Home Page, http://www-nlpir.nist.gov/projects/trecvid/
  72. Arti Khaparde, B. L. Deekshatulu, M. Madhavilath, Zakira Farheen, Sandhya Kumari V, "Content Based Image Retrieval Using Independent Component Analysis”, IJCSNS International Journal ofComputer Science and Network Security, VOL.8 No.4, April 2000.
  73. H.B. Kekre, V.A. Bharadi, S.D. Thepade, B.K. Mishra, S.E. Ghosalkar, S.M. Sawant, "Content Based Image Retreival Using Fusion of Gabor Magnitude and Modified Block Truncation Coding," icetet, pp.140-145, 2010 3rd International Conference on Emerging Trends in Engineering and Technology, 2010.
  74. Flickner M. et al, “Query by image and video content: the QBIC system”, IEEE Computer 1995, Volume 28, Number 9, pp 23-32, 1995.
  75. A. Amir, W. Hsu, G. Iyengar, C. Y. Lin, M. Naphade, A. Natsev, C. Neti, H. J. Nock, J. R. Smith, B. L. Tseng, Y. Wu, and D. Zhang, “IBM research TRECVID-2003 video retrieval system,” in Proc. TREC Video Retrieval Eval., Gaithersburg, MD, 2003. Available: http://wwwnlpir.nist.gov/projects/tvpubs/tvpapers03/ibm.smith.paper.final2.pdf
  76. J. Adcock, A. Girgensohn, M. Cooper, T. Liu, L. Wilcox, and E. Rieffel, “FXPAL experiments for TRECVID 2004,” in Proc. TREC Video Retrieval Eval., Gaithersburg, MD, 2004. Available: http://wwwnlpir.nist.gov/projects/tvpubs/tvpapers04/fxpal.pdf
  77. R. Yan and A. G. Hauptmann, “A review of text and image retrieval approaches for broadcast news video,” Inform. Retrieval, vol. 10, pp. 445–484, 2007.
  78. C. Foley, C. Gurrin, G. Jones, H. Lee, S. McGivney, N. E. O’Connor, S. Sav, A. F. Smeaton, and P. Wilkins, “TRECVID 2005 experiments at Dublin city university,” in Proc. TREC Video Retrieval Eval., Gaithersburg, MD, 2005. Available: http://wwwnlpir.nist.gov/projects/tvpubs/tv5.papers/dcu.pdf
  79. E. Cooke, P. Ferguson, G. Gaughan, C. Gurrin, G. Jones, H. L. Borgue, H. Lee, S. Marlow,K.McDonald,M. McHugh, N. Murphy,N.O’Connor, N. O’Hare, S. Rothwell, A. Smeaton, and P. Wilkins, “TRECVID 2004 experiments in Dublin city university,” in Proc. TREC Video Retrieval Eval., Gaithersburg, MD, 2004. Available: http://wwwnlpir.nist.gov/projects/tvpubs/tvpapers04/dcu.pdf
  80. H. Tamura, S. Mori, T. Yamawaki, "Textural Features Corresponding to Visual Perception", IEEE Trans. on Systems, Man and Cyber., vol. 8, no. 6, p. 460–473. 2, 4, , June 1978.
  81. www.wikipedia.org
  82. Steven W. Zucker, Demetri Terzopoulos. "Finding Structure in Co-Occurrence Matrices for Texture Analysis", computer graphics and image processing 12, 286 - 308, 1980.
  83. Che-Yen Wen, Liang-Fan Chang, Hung-Hsin Li,"Content based video retrieval with motion vectors and the RGB color model", Forensic Science Journal, volume 6, issue 2, pages 1-36, 2007.
  84. S. Bruyne, D. Deursen, J. Cock, W. Neve, P. Lambert, and R. Walle, “A compressed-domain approach for shot boundary detection on H.264/AVC bit streams,” J. Signal Process.: Image Commun., vol. 23, no. 7, pp. 473–489, 2008.
  85. H. Koumaras, G. Gardikis, G. Xilouris, E. Pallis, and A. Kourtis, “Shot boundary detection without threshold parameters,” J. Electron. Imag., vol. 15, no. 2, pp. 020503-1–020503-3, May 2006.
  86. Z.-C. Zhao and A.-N. Cai, “Shot boundary detection algorithm in compressed domain based on adaboost and fuzzy theory,” in Proc. Int. Conf. Nat. Comput., pp. 617–626, 2006.
  87. A. Divakaran, R. Radhakrishnan, and K. A Peker, “Motion activitybased extraction of key-frames from video shots,” in Proc. IEEE Int. Conf. Image Process., vol. 1, Rochester, NY, pp. 932–935, 2002.
  88. T.MLiu, H.-J. Zhang, and F. H. Qi, “A novel video key-frame-extraction algorithm based on perceived motion energy model,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 10, pp. 1006–1013, Oct. 2003.
  89. Sinora Banker Ghosalkar, Vinayak A.Bharadi, Sanjay Sharma, Asif Ansari, "Feature Extraction using Overlap Blocks for Content based Image Retreival" International Journal of Computer Applications (0975-8887), Volume 28-No.7, August 2011.
  90. Markos Zampoglou, Theophilos Papadimitriou, IEEE Member, and Konstantinos I. Diamantaras, IEEE Member, "Support Vector Machines Content-Based Video Retrieval basedsolely on Motion Information", IEEE, ISSN : 1551-2541, Print ISBN: 978-1-4244-1566-3, 2007.
  91. Dengsheng Zhang , Aylwin Wong , Maria Indrawan , Guojun Lu,“Content-based Image Retrieval Using Gabor Texture Features”,IEEE Transactions PAMI,pages 13-15, vol. 12,.
Index Terms

Computer Science
Information Sciences

Keywords

SVM CBVR GLCM Gabor Magnitude Kullback-Leibler Distance Method Relevance Feedback Method.