CFP last date
20 December 2024
Reseach Article

The Minimum Hub Distance Energy of a Graph

by Veena Mathad, Sultan Senan Mahde
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 125 - Number 13
Year of Publication: 2015
Authors: Veena Mathad, Sultan Senan Mahde
10.5120/ijca2015906179

Veena Mathad, Sultan Senan Mahde . The Minimum Hub Distance Energy of a Graph. International Journal of Computer Applications. 125, 13 ( September 2015), 1-6. DOI=10.5120/ijca2015906179

@article{ 10.5120/ijca2015906179,
author = { Veena Mathad, Sultan Senan Mahde },
title = { The Minimum Hub Distance Energy of a Graph },
journal = { International Journal of Computer Applications },
issue_date = { September 2015 },
volume = { 125 },
number = { 13 },
month = { September },
year = { 2015 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume125/number13/22489-2015906179/ },
doi = { 10.5120/ijca2015906179 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:15:55.164684+05:30
%A Veena Mathad
%A Sultan Senan Mahde
%T The Minimum Hub Distance Energy of a Graph
%J International Journal of Computer Applications
%@ 0975-8887
%V 125
%N 13
%P 1-6
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, the concept of minimum hub distance energy EHd(G) of a connected graph G is introduced and minimum hub distance energies of some standard graphs and a number of wellknown families of graphs are computed. Upper and lower bounds for EHd(G) are also established.

References
  1. C. Adiga, A. Bayad, I. Gutman, S. A. Srinivas, The minimum covering energy of a graph, Kragujevac Journal of Science, 34(2012), 39-56.
  2. R. B. Bapat, Graphs and Matrices, Hindustan Book Agency, 2011.
  3. R. B. Bapat, S. Pati, Energy of a graph is never an odd integer, Bulletin of Kerala Mathematics Association, 1(2011), 129-132.
  4. J. Bermond, J. Bond, D. Peleg and S. Perennes, The power of small coalitions in graphs, Discrete Applied Mathematics, 127(2003), 399 - 414.
  5. S. B. Bozkurt, A. D. G¨ung¨or and B. Zhou, Note on the distance energy of graphs, MATCH Communication in Mathematical and in Computer Chemistry, 64 (2010), 129-134.
  6. G. Caporossi, E. Chasset and B. Furtula, Some conjectures and properties on distance energy, Les Cahiers du GERAD, 64 (2009), 1-7.
  7. T. Grauman, S. Hartke, A. Jobson, B. Kinnersley, D. west, L. wiglesworth, P. Worah and H. Wu, The hub number of a graph, Information processing letters , 108(2008), 226-228.
  8. J. W. Grossman, F. Harary, M. Klawe, Generalized ramsey theorem for graphs, X: Double stars, Discrete Mathematics, 28(1979), 247-254.
  9. I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz, 103(1978), 1-22.
  10. I. Gutman, X. Li, J. Zhang, Graph Energy, (Ed-s: M. Dehmer, F. Em-mert) Streib., Analysis of Complex Networks, From Biology to Linguistics, Wiley-VCH, Weinheim, (2009), 145-174.
  11. A. D. G¨ung¨or and S. B. Bozkurt, On the distance spectral radius and distance energy of graphs, Linear Multilinear Algebra, 59 (2011), 365-370.
  12. F. Harary, Graph Theory, Addison Wesley, Massachusetts, 1969.
  13. T.W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dckker, New York, 1998.
  14. G. Indulal, I. Gutman and A. Vijayakumar, On distance energy of graphs, MATCH Communication in Mathematical and in Computer Chemistry, 60 (2008), 461-472.
  15. V. R. Kulli, Theory of domination in graphs, Vishwa International Publications, Gulbarga, India, 2010.
  16. X. Li, Y. Shi and Gutman, Graph Energy, Springer, New York Heidelberg Dordrecht, London, 2012.
  17. H. S. Ramane, D. S. Revankar, I. Gutman, S. B. Rao, B. D. Acharya and H. B. Walikar, Bounds for the distance energy of a graph, Kragujevac Journal of Mathematics, 31 (2008), 59-68.
  18. M. Walsh, The hub number of graphs, International Journal of Mathematics and Computer Science, 1 (2006), 117-124.
Index Terms

Computer Science
Information Sciences

Keywords

Minimum hub set minimum hub distance matrix minimum hub distance eigenvalues minimum hub distance energy.