We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

NLOS Identification for UWB Body Communications

by Mohamed Tabaa, Safa Saadaoui, Mouhammad Chehaitly, Abbas Dandache
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 124 - Number 6
Year of Publication: 2015
Authors: Mohamed Tabaa, Safa Saadaoui, Mouhammad Chehaitly, Abbas Dandache
10.5120/ijca2015905496

Mohamed Tabaa, Safa Saadaoui, Mouhammad Chehaitly, Abbas Dandache . NLOS Identification for UWB Body Communications. International Journal of Computer Applications. 124, 6 ( August 2015), 12-17. DOI=10.5120/ijca2015905496

@article{ 10.5120/ijca2015905496,
author = { Mohamed Tabaa, Safa Saadaoui, Mouhammad Chehaitly, Abbas Dandache },
title = { NLOS Identification for UWB Body Communications },
journal = { International Journal of Computer Applications },
issue_date = { August 2015 },
volume = { 124 },
number = { 6 },
month = { August },
year = { 2015 },
issn = { 0975-8887 },
pages = { 12-17 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume124/number6/22107-2015905496/ },
doi = { 10.5120/ijca2015905496 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:13:39.736230+05:30
%A Mohamed Tabaa
%A Safa Saadaoui
%A Mouhammad Chehaitly
%A Abbas Dandache
%T NLOS Identification for UWB Body Communications
%J International Journal of Computer Applications
%@ 0975-8887
%V 124
%N 6
%P 12-17
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In the last few years, a great attention has been paid to wireless communications for body area networks especially since the IEEE 802.15.6 standard. The main objective of this work is to present a good technique for identifying between both Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) propagation schemes for UWB both of both on-body and off-body communication. Our work is focalize in the first to extract the information using traditional features compared with our proposed methods and secondly to classify it using Support Vector Machine for objective to given a good recognition rate of identification between LOS and NLOS phenomena. This characterized was applied for UWB measurement by the antenna Electromagnetics Group (Body WiSeR).

References
  1. Stefano Marano, Wesley M. Gifford, Henk Wymeersch, Moe Z. Win, “Nonparametric Obstruction Detection for UWB Localization”, Global Telecommunications Conference, GLOBECOM 2009, IEEE, 2009, 1-6.
  2. Stefano Marano, Wesley M. Gifford, Henk Wymeersch, Moe Z. Win, “NLOS Identification and Mitigation for Localization Based on UWB Experimental Data”, IEEE Journal on Selected Areas in Communications, vol. 28, Issue 7, September 2010.
  3. Z. Mohammadi, R. Saadane, D. Aboutajdine, “Ultra Wide-Band Channel Characterization Using Generalized Gamma Distributions”, Image and Signal Processing, vol.7340,  pp.175-182, Springer 2012.
  4. J. Zhang, Z. Sahinoglu, P. Kinney, “UWB Systems for Wireless Sensor Networks”, Proceedings of the IEEE “Invited Paper”, vol. 97, no.2, Feb. 2009.
  5. C. Cortes, V. Vapnik, “Support Vector Networks”, Machine Learning vol. 20, no.3, pp.273-297, 1995.
  6. Ming-Chang Lee, Chang To, “Comparison of Support Vector Machine and Back Propagation Neural Network in Evaluating the Enterprise Financial Distress”, International Journal of Artificial Intelligence & Applications (IJAIA), vol.1, no.3, July 2010.
  7. A. Karatzoglou, D. Meyer and K. Hornik “Support Vector Machine in R”, Journal of Statistical Software, vol.15, no.9, Apr. 2006.
  8. S. Venkatesh, R. M. Buehrer, “Non-Line-of-Sight Identification in Ultra-Wideband Systems Based on Received Signal Statistics”, Antennas Propag., vol.1, no.6, pp.1120-1130, 2007.
  9. Raffaele Di Bari, Qammer H. Abbasi, Akram Alomainyans, Yang Hao, “An Advanced UWB Channel Model for Body-Centric Wireless Networks", Progress in Electromagnetics Research, vol.136, pp.79-99, 2013.
  10. H. El Ghannudi, L. Clavier, N. Azzaoui, F. Septier, P-A. Rolland, “Alpha-stable Interference Modeling and Cauchy Receiver for an IR-UWB ad hoc Network”, IEEE Transactions on Communications,  vol.58,  issue 6, June 2010.
  11. J. H. McCulloch, “Simple Consistent Estimators of Stable Distribution Parameters”, Communications in Statistics - Simulation and Computation, vol.15, issue 4, pp.1109-1136, 1986.
  12. W. Suwansantisuk, M. Z. Win, “Multipath Aided Rapid Acquisition: Optimal Search Strategies,” IEEE Transactions on Information Theory, vol.53, no.1, pp.174-193, Jan. 2007.
  13. M. Z. Win, G. Chrisikos, A. F. Molisch, “Wideband Diversity in Multipath Channels with Nonuniform Power Dispersion Profiles”, IEEE Transactions on Wireless Communications, vol.5, no.5, pp.1014-1022, May 2006.
  14. J. Khodjaev, Y. Park, A. S. Malik, “Survey of NLOS Identification and Error Mitigation Problems in UWB-Based Positioning Algorithms for Dense Environments,” Annals of Telecommunications, June 2010, vol.65, issue 5-6, pp.301-311, Springer 2009.
  15. M. Tabaa, C. Diou, M. El Aroussi, B. Chouri, A. Dandache, “LOS and NLOS Identification Based on UWB Stable Distribution”, IEEE International Conference on Microelectronics, December 15-18, Beyrouth, Lebanon, 10.1109/ICM.2013.6734961.
  16. Mohammad Monirujjaman Khan, Qammer H. Abbasi, Akram Alomainy, Yang Hao, "Performance of Ultra wideband Wireless Tags for On-Body Radio Channel Characterisation", International Journal of Antennas and Propagation, vol.2012, article ID 232564, 10 pages.
  17. Min Chen, Sergio Gonzalez, AthanasiosVasilakos, Huasong Cao, Victor C.M.Leung, "Body Area Networks: A survey", Journal of Special Issues on Mobility of Systems Users, Data and Computing, vol.16, no.2, 2010, ISSN 1383-469X.
  18. Mohamed Tabaa, Camille Diou, Rachid Saadane, Abbas Dandache, « LOS /NLOS Identification based on stable distribution feature extraction and SVM classifier for UWB On-body communications », Procedia Computer Science Volume 32, pages 882-887, 2014.
  19. S. Mallat. A theory for multiresolution signal decomposition: The wavelet representation.IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674–693, July 1989.
  20. V.Savic, E.G.Larsson, J.Ferrer-Coll, P.Stenumgaard “Kernel Principal Component Analysis for UWB-Based Ranging”, IEEE international workshop on signal processing advances in wireless communications, Toronto, 22-25 June 2014.
Index Terms

Computer Science
Information Sciences

Keywords

Ultra-wideband (UWB) Line-of-sight (LOS) Non-line-of-sight (NLOS) Stable distribution Support Vector Machine (SVM) On-body Off-body.