CFP last date
20 December 2024
Reseach Article

Enhancing the Performance of Feature Selection using a Hybrid Genetic Algorithm

by N. Vanjulavalli, A. Kovalan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 124 - Number 15
Year of Publication: 2015
Authors: N. Vanjulavalli, A. Kovalan
10.5120/ijca2015905700

N. Vanjulavalli, A. Kovalan . Enhancing the Performance of Feature Selection using a Hybrid Genetic Algorithm. International Journal of Computer Applications. 124, 15 ( August 2015), 29-34. DOI=10.5120/ijca2015905700

@article{ 10.5120/ijca2015905700,
author = { N. Vanjulavalli, A. Kovalan },
title = { Enhancing the Performance of Feature Selection using a Hybrid Genetic Algorithm },
journal = { International Journal of Computer Applications },
issue_date = { August 2015 },
volume = { 124 },
number = { 15 },
month = { August },
year = { 2015 },
issn = { 0975-8887 },
pages = { 29-34 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume124/number15/22182-2015905700/ },
doi = { 10.5120/ijca2015905700 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:14:31.280969+05:30
%A N. Vanjulavalli
%A A. Kovalan
%T Enhancing the Performance of Feature Selection using a Hybrid Genetic Algorithm
%J International Journal of Computer Applications
%@ 0975-8887
%V 124
%N 15
%P 29-34
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Information Retrieval (IR) issues have attracted increasing attention due to the growing availability of the documents. The retrieval of web pages is more challenging due to the ambiguous nature of the unstructured information found in these pages. Ontologies help to overcome the disambiguate nature of the natural language by the use of standard terms that relate to specific concepts. Ontology is a hierarchy of concepts with attributes and relations that defines an agreed terminology to describe semantic networks of interrelated information units. Ontology provides a vocabulary of classes and properties to describe a domain, emphasizing the sharing of knowledge and the consensus about its representation. This research focuses on IR systems moving from a lexical to semantic interpretation to match object and queries on a semantic basis. In natural language, many words are ambiguous giving different meanings based on the context and situation. Therefore, development of web directories, classification of web pages and analysis of topic-specific search are useful. Classification of contents makes an important part of most of the content management and retrieval activities. The underlying objective of this research work is to develop an effective and efficient feature selection and classification algorithm that can achieve good accuracy in classifying web pages.

References
  1. Carmel, D., Cohen, D., Fagin, R., Farchi, E., Herscovici, M., Maarek, Y. S., and Soffer, A. Static index pruning for information retrieval systems. In Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval ACM ,2001, pp. 43-50.
  2. Cheng, C. K., Pan, X., andKurfess, F. (2004). Ontology-based semantic classification of unstructured documents. In Adaptive Multimedia Retrieval (pp. 120-131). Springer Berlin Heidelberg.
  3. Doan, A., Madhavan, J., Domingos, P., and Halevy, A. (2004). Ontology matching: A machine learning approach. Handbook on Ontologies in Information Systems, 397-416.
  4. Ekbal, A., Saha, S., andGarbe, C. S. (2010, August). Feature Selection Using Multiobjective Optimization for Named Entity Recognition. In Pattern Recognition (ICPR), 2010 20th International Conference on (pp. 1937-1940). IEEE.
  5. Fernandez, M., Cantador, I., López, V., Vallet, D., Castells, P., and Motta, E. (2011). Semantically enhanced Information Retrieval: an ontology-based approach. Web semantics: Science, services and agents on the world wide web, 9(4), 434-452.
  6. Kelly, D. Methods for evaluating interactive information retrieval systems with users, Foundations and Trends in Information Retrieval, 3(1—2), 2009, pp.1-224.
  7. Khan, L., McLeod, D., andHovy, E. (2004) “ Retrieval effectiveness of an ontology- based model for information selection”, The VLDB Journal—The International Journal onVery Large Data Bases, 13(1), 71-85.
  8. Kohavi, R. (1995). Wrappers for performance enhancement and oblivious decision graph(Doctoral dissertation, Stanford university).
  9. Pan, X., andAssal, H. (2003, October). Providing context for free text interpretation. In Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003 International Conference on (pp. 704-709). IEEE
  10. Shen, D., Chen, Z., Yang, Q., Zeng, H. J., Zhang, B., Lu, Y., and Ma, W. Y, (July 2004) “Web-page classification through summarization” In Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 242-249). ACM,.
  11. Shibu, S., Vishwakarma, A., and Bhargava, N, combination approach for Web Page Classification using Page Rank and Feature Selection Technique. International Journal of Computer Theory and Engineering, 2(6), pp.897-900, 2010.
  12. Singhal, A. (2001). Modern information retrieval: A brief overview. IEEE Data Eng. Bull., 24(4), 35-43.
  13. Song, F., and Croft, W. B. (1999, November). A general language model for information retrieval. In Proceedings of the eighth international conference on Information and knowledge management (pp. 316-321). ACM.
  14. Song, F., and Croft, W. B. A general language model for information retrieval. In Proceedings of the eighth ACM. international conference on Information and knowledge management  Nov. 1999, pp. 316-321.
  15. Song, L., Mi, H., Lü, Y., and Liu, Q. Bagging-based system combination for domain adaptation. Proceedings of MT Summit XIII, Xiamen, China, 2011.
  16. Steinbach, M., Karypis, G., and Kumar, V. (2000, August) A comparison of document clustering techniques. In KDD workshop on text mining Vol. 400, pp. 525-526.
  17. Stojanovic, N. Ontology-based information retrieval: methods and tools for cooperative query answering (Doctoral dissertation, Karlsruhe, Univ., Diss., 2005).
  18. Tiwari, R., and Singh, M. P. Correlation-based attribute selection using genetic algorithm. International Journal of computer Applications 4(8), 2010, pp.8875-      8887,
  19. Tuominen, J., Kauppinen, T., Viljanen, K., andHyvönen, E. (2009, May). Ontology-based query expansion widget for information retrieval. In Proceedings of the 5th Workshop on Scripting and Development for the Semantic Web (SFSW 2009), 6th European Semantic Web Conference (ESWC 2009) (Vol. 449).
  20. Vafaie, H., and Imam, I. F. (1994, March). Feature selection methods: genetic algorithms vs. greedy-like search. In Proceedings of International Conference on Fuzzy and Intelligent Control Systems.
  21. Wiratunga, N., Koychev, I., and Massie, S Feature selection and generalization for retrieval of textual cases, In Advances in Case-Based Reasoning Springer Berlin Heidelberg 2004, pp. 806- 820.
Index Terms

Computer Science
Information Sciences

Keywords

Information Retrieval Feature Selection Genetic Algorithm