CFP last date
20 January 2025
Reseach Article

Shadow Detection by Local Color Constancy

by Deepika Digarse, Krishna Chauhan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 124 - Number 14
Year of Publication: 2015
Authors: Deepika Digarse, Krishna Chauhan
10.5120/ijca2015905816

Deepika Digarse, Krishna Chauhan . Shadow Detection by Local Color Constancy. International Journal of Computer Applications. 124, 14 ( August 2015), 36-41. DOI=10.5120/ijca2015905816

@article{ 10.5120/ijca2015905816,
author = { Deepika Digarse, Krishna Chauhan },
title = { Shadow Detection by Local Color Constancy },
journal = { International Journal of Computer Applications },
issue_date = { August 2015 },
volume = { 124 },
number = { 14 },
month = { August },
year = { 2015 },
issn = { 0975-8887 },
pages = { 36-41 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume124/number14/22176-2015905816/ },
doi = { 10.5120/ijca2015905816 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:14:27.124466+05:30
%A Deepika Digarse
%A Krishna Chauhan
%T Shadow Detection by Local Color Constancy
%J International Journal of Computer Applications
%@ 0975-8887
%V 124
%N 14
%P 36-41
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper describe the technique of shadow detection properly, this technique can detect both the cast and self-shadow. The method exploits local color constancy properties which are cause of reflectance suppression in excess of shadowed regions. For detecting shadowed areas in a scene, the values of the backdrop image are separated by values of the current frame in the true color (RGB) space. We use all three type of colour space in our work. Illumination map is extracted using a steerable filter framework based on global, local correlations in low and high frequency bands respectively. The lighting and colour features so extracted are then input to a decision trees are designed to detect shadow edges using AdaBoost. The simulation results give us an idea about the performance of the proposed method as good with boundary marking on shadow and nonshadow region with high accuracy.

References
  1. H.G. Barrow and J.M. Tanenbaum. Recovering intrinsic scene characteristics from images. CVS, pages 3–26, 1978.
  2. Bousseau, S. Paris, and F. Durand. User assisted intrinsic images. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2009), 28(5):130:1–130:10, 2009.
  3. M. Collins, Robert E. Schapire, and Y. Singer. Logistic regression, adaboost and bregman distances. Machine Learning, 48:253–285, September 2002.
  4. D. Comanicu and P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Analysis and Machine Intelligence, 24:603–619, 2004.
  5. G. D. Finlayson, S. D. Hordley, C. Lu, and M. Drew. On the removal of shadows from images. IEEE Trans. Pattern Analysis and Machine Intelligence, 28:59–68, 2006.
  6. Huerta, M. Holte, T. Moeslund, and J. Gonzalez. Detection and removal of chromatic moving shadows in surveillance scenarios. IEEE Int’l Conf. on Computer Vision, 2009.
  7. X. Jiang, A. J. Schofield, and J. L. Wyatt. Correlation-based intrinsic image extraction from a single image. ECCV, 4:58–71, 2010.
  8. J. Joshi and N. P. Papanikolopoulos. Learning to detect moving shadows in dynamic environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30:2055–2063, November 2008.
  9. V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26: 65–81, 2004.
  10. J. F. Lalonde, A. A. Efros, and S.G. Narasimhan. Estimating natural illumination from a single outdoor image. IEEE Int’l Conf. on Computer Vision, pages 183–190, 2009.
  11. J. F. Lalonde, A. A. Efros, and S. G. Narasimhan. Detecting ground shadow in outdoor consumer photographs. ECCV, pages 322–335, 2010.
  12. N. M. Brisson and A. Zaccarin. Learning and removing cast shadows through a multi distribution approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29:1133–1146, July 2007.
  13. Y. Matsushita, S. Lin, S. B. Kang, and H.-Y. Shum. Estimating intrinsic images from image sequences with biased illumination. ECCV, 2: 274–286, 2004.
  14. Y. Matsushita, K. Nishino, K. Ikeuchi, and M. Sakauchi. Illumination normalization with time-dependent intrinsic images for video surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26:1336 – 1347, 2004.
  15. T. Okabe, I. Sato, and Y. Sato. Attached shadow coding: Estimating surface normals from shadows under unknown reflectance and lighting conditions. In IEEE Int’l ICCV, pages 1693–1700, 2009.
  16. B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme: A database and web-based tool for image annotation. International Journal of Computer Vision, 77:157–173, 2008.
  17. Sato, Y. Sato, and K. Ikeuchi. Illumination from shadows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(3):290–300, 2003.
  18. J. Schofield, G. Hesse, P. B. Rock, and M. A. Georgeson. Local luminance amplitude modulates the interpretation of shape-from-shading in textured surfaces. Vision Research, 46:3462–3482, 2006.
  19. L. Shen, P. Tan, and S. Lin. Intrinsic image decomposition with non-local texture cues. IEEE CVPR, pages 1–7, 2008.
  20. E. P. Simoncelli and W. T. Freeman. The steerable pyramid: A flexible architecture for multi-scale derivative computation. IEEE Second Int’l Conf on Image Processing, pages 444–447, 1995.
  21. R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, A. Agarwala, and C. Rother. A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans. Pattern Analysis and Machine Intelligence, 30(6):1068–1080, 2008.
  22. M. F. Tappen, W. T. Freeman, and E. H. Adelson. Recovering intrinsic images from a single image. IEEE Trans. Pattern Anal. Mach. Intell., 27:1459–1472, 2005.
  23. E. Vazquez, R. Baldrich, J. V. d. Weijer, and M. Vanrell. Describing reflectances for color segmentation robust to shadows, highlights, and textures. IEEE Trans. Pattern Analysis and Machine Intelligence, 33:917–930, 2011.
  24. Y. Weiss. Deriving intrinsic images from image sequences. IEEE Int’l Conf. on Computer Vision, 2:68–75, 2001.
  25. J. Zhu, K. G. G. Samuel, S. Z. Masood, and M. F. Tappen. Learning to recognize shadow in monochromatic natural images. CVPR 10: Proceedings of the 2006 IEEE CSCCVPR, pages 223–230, 2010.
Index Terms

Computer Science
Information Sciences

Keywords

Shadow detection Amplitude Modulation & Luminance Modulation Colour Feature segmentation and Feature extraction Illumination Map Condition Random Field (CRF)