CFP last date
20 January 2025
Reseach Article

Automatic Detection of Exudates from Digital Color Fundus Images

by Ahmed S. El Sisy, Nancy M. Salem, Ahmed F.seddik
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 122 - Number 7
Year of Publication: 2015
Authors: Ahmed S. El Sisy, Nancy M. Salem, Ahmed F.seddik
10.5120/21712-4832

Ahmed S. El Sisy, Nancy M. Salem, Ahmed F.seddik . Automatic Detection of Exudates from Digital Color Fundus Images. International Journal of Computer Applications. 122, 7 ( July 2015), 18-22. DOI=10.5120/21712-4832

@article{ 10.5120/21712-4832,
author = { Ahmed S. El Sisy, Nancy M. Salem, Ahmed F.seddik },
title = { Automatic Detection of Exudates from Digital Color Fundus Images },
journal = { International Journal of Computer Applications },
issue_date = { July 2015 },
volume = { 122 },
number = { 7 },
month = { July },
year = { 2015 },
issn = { 0975-8887 },
pages = { 18-22 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume122/number7/21712-4832/ },
doi = { 10.5120/21712-4832 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:10:27.135884+05:30
%A Ahmed S. El Sisy
%A Nancy M. Salem
%A Ahmed F.seddik
%T Automatic Detection of Exudates from Digital Color Fundus Images
%J International Journal of Computer Applications
%@ 0975-8887
%V 122
%N 7
%P 18-22
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Diabetic retinopathy is a widespread disease that may cause blindness. Early diagnosis and treatment will reduce its side effects and protect the eye. In this paper, a new algorithm for exudates detection is proposed. In the preprocessing step, the green channel of the color image is used, and then median filter followed by Contrast Limited Adaptive Histogram Equalization (CLAHE) is applied. The K-means clustering technique is used to select exudates objects. Optic disc is localized using maximum entropy filter and morphological closing. It is demonstrated that combining the K-means with CLAHE of the median filtered image results in 99. 39% correct exudates. Experimental results show a reliable and accurate method for segmenting exudates from color retinal images. Performance of the proposed method is evaluated using a set of 52 images from a publicly available dataset STARE.

References
  1. Haleem M. S. , Han L. , van Hemert J. , and Li B. , "Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review," Computerized Medical Imaging and Graphics, vol. 37, pp. 581-596, 2013.
  2. Deepak K. S. and Sivaswamy J. , "Automatic assessment of macular edema from color retinal images," Medical Imaging, IEEE Transactions on, vol. 31, pp. 766-776, 2012.
  3. Ahmad A. , Mansoor A. B. , Mumtaz R. , Khan M. , and Mirza S. , "Image processing and classification in diabetic retinopathy: a review," in Visual Information Processing (EUVIP), 2014 5th European Workshop on, 2014, pp. 1-6.
  4. Tariq A. , Akram M. U. , and Javed M. Y. , "Computer aided diagnostic system for grading of diabetic retinopathy," in Computational Intelligence in Medical Imaging (CIMI), 2013 IEEE Fourth International Workshop on, 2013, pp. 30-35.
  5. Vimala G. and Mohideen S. K. , "Automatic detection of optic disk and exudate from retinal images using clustering algorithm," in Intelligent Systems and Control (ISCO), 2013 7th International Conference on, 2013, pp. 280-284.
  6. Sreng S. , Takada J. -I. , Maneerat N. , Isarakorn D. , Pasaya B. , Panjaphongse R. , et al. , "Automatic exudate extraction for early detection of Diabetic Retinopathy," in Information Technology and Electrical Engineering (ICITEE), 2013 International Conference on, 2013, pp. 31-35.
  7. Ramasubramanian B. and Mahendran G. , "An efficient integrated approach for the detection of exudates and Diabetic Maculopathy in colour fundus images," Advanced Computing, vol. 3, 2012.
  8. Sopharak A. , Uyyanonvara B. , Barman S. , and Williamson T. H. , "Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods," Computerized Medical Imaging and Graphics, vol. 32, pp. 720-727, 2008.
  9. Karegowda A. G. , Nasiha A. , Jayaram M. , and Manjunath A. , "Exudates detection in retinal images using back propagation neural network," International Journal of Computer Application, vol. 25, pp. 25-31, 2011.
  10. Eadgahi M. G. F. and Pourreza H. , "Localization of hard exudates in retinal fundus image by mathematical morphology operations," in Computer and Knowledge Engineering (ICCKE), 2012 2nd International eConference on, 2012, pp. 185-189.
  11. Tripathi S. , Singh K. K. , Singh B. , and Mehrotra A. , "Automatic detection of exudates in retinal fundus Images using differential morphological profile," International Journal of Engineering & Technology (0975-4024), vol. 5, 2013.
  12. El Abbadi N. K. and Al-Saadi E. H. , "Automatic detection of exudates in retinal images," International Journal of Computer Science Issues (IJCSI), vol. 10, 2013.
  13. Vandarkuzhali T. , Ravichandran C. , and Preethi D. , "Detection of exudates caused by Diabetic Retinopathy in fundus retinal image using fuzzy K Means and Neural Network. "
  14. Franklin S. W. and Rajan S. E. , "Diagnosis of diabetic retinopathy by employing image processing technique to detect exudates in retinal images," Image Processing, IET, vol. 8, pp. 601-609, 2014.
  15. Zhang X. , Thibault G. , Decencière E. , Marcotegui B. , Laÿ B. , Danno R. , et al. , "Exudate detection in color retinal images for mass screening of diabetic retinopathy," Medical image analysis, vol. 18, pp. 1026-1043, 2014.
  16. Gonzalez R. C. , Woods R. E. , and Eddins S. L. , 2004, Digital image processing using MATLAB, Upper Saddle River, N. J: Pearson Prentice Hall, 2.
  17. Setiawan A. W. , Mengko T. R. , Santoso O. S. , and Suksmono A. B. , "Color retinal image enhancement using clahe," in ICT for Smart Society (ICISS), 2013 International Conference on, 2013, pp. 1-3.
  18. Shi G. , Gao B. , and Zhang L. , "The optimized k-means algorithms for improving randomly-initialed midpoints," in Measurement, Information and Control (ICMIC), 2013 International Conference on, 2013, pp. 1212-1216.
  19. Hashim F. , Salem N. , and Seddik A. , "Optic disc boundary detection from digital fundus images," Journal of Medical Imaging and Health Informatics, vol. 5, pp. 50-56, 2015.
  20. Mendonça A. M. , Sousa A. , Mendonça L. , and Campilho A. , "Automatic localization of the optic disc by combining vascular and intensity information," Computerized Medical Imaging and Graphics, vol. 37, pp. 409-417, 2013.
  21. Hoover A. , "STARE Database," Avilable: http://www. ces. clemson. edu/~ahoover/stare/
  22. Amel F. , Mohammed M. , and Abdelhafid B. , "Improvement of the hard exudates detection method used for computer-aided diagnosis of diabetic retinopathy," International Journal of Image, Graphics and Signal Processing (IJIGSP), vol. 4, p. 19, 2012.
Index Terms

Computer Science
Information Sciences

Keywords

Diabetic Retinopathy Exudates detection Entropy filter K-means clustering