CFP last date
20 May 2024
Reseach Article

A Framework for Fuzzy Ontology Storing onto Relational Database within an a Priori Data Integration System

by El-mehdi Berber, Beldjilali Bouziane, Myriam Lamolle
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 122 - Number 15
Year of Publication: 2015
Authors: El-mehdi Berber, Beldjilali Bouziane, Myriam Lamolle

El-mehdi Berber, Beldjilali Bouziane, Myriam Lamolle . A Framework for Fuzzy Ontology Storing onto Relational Database within an a Priori Data Integration System. International Journal of Computer Applications. 122, 15 ( July 2015), 10-18. DOI=10.5120/21775-5045

@article{ 10.5120/21775-5045,
author = { El-mehdi Berber, Beldjilali Bouziane, Myriam Lamolle },
title = { A Framework for Fuzzy Ontology Storing onto Relational Database within an a Priori Data Integration System },
journal = { International Journal of Computer Applications },
issue_date = { July 2015 },
volume = { 122 },
number = { 15 },
month = { July },
year = { 2015 },
issn = { 0975-8887 },
pages = { 10-18 },
numpages = {9},
url = { },
doi = { 10.5120/21775-5045 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
%0 Journal Article
%1 2024-02-06T23:10:37.152652+05:30
%A El-mehdi Berber
%A Beldjilali Bouziane
%A Myriam Lamolle
%T A Framework for Fuzzy Ontology Storing onto Relational Database within an a Priori Data Integration System
%J International Journal of Computer Applications
%@ 0975-8887
%V 122
%N 15
%P 10-18
%D 2015
%I Foundation of Computer Science (FCS), NY, USA

Resolving semantic heterogeneity is still a challenging issue in data integration systems; but it can be strongly fixed when using ontology in an a priori approach where local ontology concepts are linked with shared ontology prior to populating data in corresponding sources. In this paper, we describe a defying context where local source is described by a fuzzy OWL ontology within an integration system using an a priori approach to achieve automatic integration for new data sources. We propose a conceptual framework starting by shared ontology and producing a target fuzzy Relational Database for every ontology-based local source participating in the integration system. Assuming shared ontology is a consensus in a given domain, this framework provides various contributions. It aims to solve ahead the problem of heterogeneous data sources because the local ontology that references the shared ontology is used to generate the conceptual data model for the target fuzzy Relational Database. To do this, it extends the a priori approach to deal with uncertainty which is a very common requirement in real world applications. Its storage process may be run on most of popular RDBMS. It is using a fuzzy OWL which represents most of fuzzy ontology constructs.

  1. Gruber, T. R. : A translation approach to portable ontology specifications. Knowledge acquisition 5, 199-220 (1993)
  2. Tho, Q. T. , Hui, S. C. , Fong, A. C. M. , Cao, T. H. : Automatic fuzzy ontology generation for semantic web. Knowledge and Data Engineering, IEEE Transactions on 18, 842-856 (2006)
  3. Noy, N. F. : Semantic integration: a survey of ontology-based approaches. ACM Sigmod Record 33, 65-70 (2004)
  4. Bellatreche, L. , Dung, N. X. , Pierra, G. , Hondjack, D. : Contribution of ontology-based data modeling to automatic integration of electronic catalogues within engineering databases. Computers in Industry 57, 711-724 (2006)
  5. Bellatreche, L. , Pierra, G. , Xuan, D. N. , Hondjack, D. , Ameur, Y. A. : An a priori approach for automatic integration of heterogeneous and autonomous databases. In: Database and Expert Systems Applications, pp. 475-485. Springer, (2004)
  6. Pierra, G. : The PLIB ontology-based approach to data integration. Building the Information Society, pp. 13-18. Springer (2004)
  7. Dehainsala, H. , Pierra, G. , Bellatreche, L. : Ontodb: An ontology-based database for data intensive applications. Advances in Databases: Concepts, Systems and Applications, pp. 497-508. Springer (2007)
  8. LV, Y. , ZHANG, D. : Semantic Preserving Storage Approach of Fuzzy Ontology. Journal of Computational Information Systems 8, 8675-8682 (2012)
  9. Zhang, F. , Ma, Z. , Yan, L. , Cheng, J. : Storing fuzzy ontology in fuzzy relational database. In: Database and Expert Systems Applications, pp. 447-455. Springer, (2011)
  10. Campaña, J. R. , Medina, J. M. , Vila, M. A. : Semantic Data Management Using Fuzzy Relational Databases. Flexible Approaches in Data, Information and Knowledge Management, pp. 115-140. Springer (2014)
  11. Bobillo, F. , Straccia, U. : Fuzzy ontology representation using OWL 2. International Journal of Approximate Reasoning 52, 1073-1094 (2011)
  12. Bobillo, F. , Delgado, M. , Gómez-Romero, J. : Crisp representations and reasoning for fuzzy ontologies. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 17, 501-530 (2009)
  13. Calegari, S. , Ciucci, D. : Fuzzy ontology, fuzzy description logics and fuzzy-OWL. Applications of Fuzzy Sets Theory, pp. 118-126. Springer (2007)
  14. Das, S. , Chong, E. I. , Eadon, G. , Srinivasan, J. : Supporting ontology-based semantic matching in RDBMS. In: Proceedings of the Thirtieth international conference on Very large data bases-Volume 30, pp. 1054-1065. VLDB Endowment, (2004)
  15. Astrova, I. , Korda, N. , Kalja, A. : Storing OWL ontologies in SQL relational databases. International Journal of Electrical, Computer and Systems Engineering 1, 242-247 (2007)
  16. Vysniauskas, E. , Nemuraite, L. : Transforming ontology representation from OWL to relational database. Information Technology and Control 35, 333-343 (2006)
  17. Sugumaran, V. , Storey, V. C. : The role of domain ontologies in database design: An ontology management and conceptual modeling environment. ACM Transactions on Database Systems (TODS) 31, 1064-1094 (2006)
  18. Storey, V. C. , Dey, D. , Ullrich, H. , Sundaresan, S. : An ontology-based expert system for database design. Data & Knowledge Engineering 28, 31-46 (1998)
  19. Roldan-Garcia, M. , Navas-Delgado, I. , Aldana-Montes, J. F. : A design methodology for semantic Web database-based systems. In: Information Technology and Applications, 2005. ICITA 2005. Third International Conference on, pp. 233-237. IEEE, (2005)
  20. Blanco, I. J. , Vila, M. A. , Martinez?Cruz, C. : The use of ontologies for representing database schemas of fuzzy information. International Journal of Intelligent Systems 23, 419-445 (2008)
  21. Martínez-Cruz, C. , Blanco, I. , Vila, M. A. : Describing Fuzzy DB Schemas as Ontologies: A System Architecture View. In: Hüllermeier, E. , Kruse, R. , Hoffmann, F. (eds. ) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications, vol. 81, pp. 147-157. Springer Berlin Heidelberg (2010)
  22. Barranco, C. D. , Campaña, J. R. , Medina, J. M. , Pons, O. : On storing ontologies including fuzzy Datatypes in relational databases. In: Fuzzy Systems Conference, pp. 1-6. IEEE, (2007)
  23. Miller, R. J. , Ioannidis, Y. E. , Ramakrishnan, R. : The use of information capacity in schema integration and translation. In: VLDB, pp. 120-133. Citeseer, (1993)
  24. Berber, E. -M. , Beldjilali, B. , Myriam, L. : Towards an ontological framework for the automatic generation of relational database schemas. In: Colloque sur l'Optimisation et Systèmes d'informations (COSI'2014). (2014)
  25. Kazakov, Y. : RIQ and SROIQ are harder than SHOIQ. In: In Proc. KR'08. (2008)
Index Terms

Computer Science
Information Sciences


Data integration systems database description logic ontology fuzzy logic.