CFP last date
20 January 2025
Reseach Article

Decision Support System for the Assessment of Risk Factors for Type 2 Diabetes and Minimizing the Risk for Complications

by Soumaya Fellaji, Abdellah Azmani, Abdelhadi Akharif
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 122 - Number 1
Year of Publication: 2015
Authors: Soumaya Fellaji, Abdellah Azmani, Abdelhadi Akharif
10.5120/21661-4717

Soumaya Fellaji, Abdellah Azmani, Abdelhadi Akharif . Decision Support System for the Assessment of Risk Factors for Type 2 Diabetes and Minimizing the Risk for Complications. International Journal of Computer Applications. 122, 1 ( July 2015), 1-5. DOI=10.5120/21661-4717

@article{ 10.5120/21661-4717,
author = { Soumaya Fellaji, Abdellah Azmani, Abdelhadi Akharif },
title = { Decision Support System for the Assessment of Risk Factors for Type 2 Diabetes and Minimizing the Risk for Complications },
journal = { International Journal of Computer Applications },
issue_date = { July 2015 },
volume = { 122 },
number = { 1 },
month = { July },
year = { 2015 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume122/number1/21661-4717/ },
doi = { 10.5120/21661-4717 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:09:25.237330+05:30
%A Soumaya Fellaji
%A Abdellah Azmani
%A Abdelhadi Akharif
%T Decision Support System for the Assessment of Risk Factors for Type 2 Diabetes and Minimizing the Risk for Complications
%J International Journal of Computer Applications
%@ 0975-8887
%V 122
%N 1
%P 1-5
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Type 2 diabetes is an epidemic disease that knows an exponential increase all over the world. Its micro and macro vascular complications are multiple and they are responsible for many deaths worldwide. To cope with this problem, and exploiting the success of artificial intelligence methods in the field of prevention and decision making in various areas, it becomes essential to think about modeling a decision support system to improve the quality of life of patients with type 2 diabetes and to reduce the risk of its complications. The proposed model provides results showing the usefulness and ability of this artificial intelligence technique for decision making in order to improve the quality of life of patients with type 2 diabetes and to reduce the risk of its complications.

References
  1. Statistiques sanitaires mondiales 2012. Gene?ve: Organisation Mondiale de la Sante?, 2012.
  2. T. Mouraux and H. Dorchy, "Le poids de l'obésité dans le (pré) diabète de type 2 chez les enfants et adolescents: quand et comment le rechercher?," Arch. Pédiatrie, vol. 12, no. 12, pp. 1779–1784, 2005.
  3. W. H. Organization, "Strate?gie mondiale de l'OMS pour l'alimentation, l'exercice physique et la sante?: cadre de suivi et d'e?valuation de la mise en oeuvre," 2009.
  4. D. Graillot, V. Quipourt, B. Bouillet, J. -M. Petit, and P. Manckoundia, "Diabète de type 2 chez le sujet âgé?: quelles spécificités??," Rev. Médecine Interne, vol. 33, no. 10, pp. 575–579, Oct. 2012.
  5. R. A. Ali, "Management of diabetic neuropathy," Malays. J. Med. Sci. MJMS, vol. 10, no. 2, p. 27, 2003.
  6. J. -F. Brun, S. Bordenave, E. Ghanassia, M. -C. Picot, A. Jaussent, J. Mercier, and C. Prefaut, "Le réentraînement à l'activité physique dans le diabète de type 2 réduit les dépenses de santé?: résultats d'une étude prospective," Sci. Sports, vol. 23, no. 3–4, pp. 193–197, Jun. 2008.
  7. H. Gin, "Nutrition et diabète: diététique pratique," EMC-Médecine, vol. 1, no. 1, pp. 46–50, 2004.
  8. E. J. Mayer-Davis and T. Costacou, "Obesity and sedentary lifestyle: modifiable risk factors for prevention of type 2 diabetes," Curr. Diab. Rep. , vol. 1, no. 2, pp. 170–176, 2001.
  9. M. Duclos, J. -M. Oppert, B. Vergès, V. Coliche, J. -F. Gautier, C. -Y. Guezennec, G. Reach, and G. Strauch, "Activité physique et diabète de type 2: Référentiel de la Société francophone du diabète (SFD), 2011," Médecine Mal. Métaboliques, vol. 6, no. 1, pp. 80–96, 2012.
  10. F. B. Hu, "Sedentary lifestyle and risk of obesity and type 2 diabetes," Lipids, vol. 38, no. 2, pp. 103–108, 2003.
  11. R. E. Neapolitan, Learning bayesian networks. Pearson Prentice Hall Upper Saddle River, 2004.
  12. P. Naïm, P. -H. Wuillemin, P. Leray, O. Pourret, and A. Becker, Réseaux bayésiens. Eyrolles, 2011.
  13. I. Maglogiannis, E. Zafiropoulos, A. Platis, and C. Lambrinoudakis, "Risk analysis of a patient monitoring system using Bayesian Network modeling," J. Biomed. Inform. , vol. 39, no. 6, pp. 637–647, Dec. 2006.
  14. M. Athanasiou and J. Y. Clark, "A Bayesian network model for the diagnosis of the caring procedure for wheelchair users with spinal injury," Comput. Methods Programs Biomed. , vol. 95, no. 2, pp. S44–S54, Aug. 2009.
  15. T. Launay, "Méthodes bayésiennes pour la prévision de consommation l'électricité," Université de Nantes, 2012.
  16. B. Jida, "Intégration du contexte par réseaux bayésiens pour la détection et le suivi multi-cibles," 2008.
  17. P. Leray, "Réseaux Bayésiens: apprentissage et modélisation de systèmes complexes," Habilit. À Dir. Rech. Univ. Rouen, 2006.
  18. M. Blum, "Statistique bayésienne et applications en génétique des populations," Université de Grenoble, 2012.
  19. G. Fusco, "La mobilité quotidienne dans les grandes villes du monde: application de la théorie des réseaux bayésiens," Cybergeo Eur. J. Geogr. , 2004.
  20. H. Bakkali, S. K. Issa, and A. Azmani, "The modeling of fire hazards in a goods warehouse by the Bayesian network," Int. J. Emerg. Trends Eng. Dev. , pp. 2249–6149, 2013.
  21. M. Duclos, J. -M. Oppert, B. Verges, V. Coliche, J. -F. Gautier, Y. Guezennec, G. Reach, and G. Strauch, "Physical activity and type 2 diabetes. Recommandations of the SFD (Francophone Diabetes Society) diabetes and physical activity working group," Diabetes Metab. , vol. 39, no. 3, pp. 205–216, May 2013.
  22. S. Fellaji, A. Azmani, and A. Akharif, "Conception of Decision Support Tool for the Prevention and Detection of Type 2 Diabetes. ," Int. J. Comput. Appl. , vol. 76, 2013.
Index Terms

Computer Science
Information Sciences

Keywords

Health quality type 2 diabetes Bayesian Networks Decision Support System Complications of Type 2 Diabetes.