CFP last date
20 January 2025
Reseach Article

Grammatical Swarm based Segmentation Methodology for Lesion Segmentation in Brain MRI

by Tapas Si, Arunava De, Anup Kumar Bhattacharjee
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 121 - Number 4
Year of Publication: 2015
Authors: Tapas Si, Arunava De, Anup Kumar Bhattacharjee
10.5120/21525-4481

Tapas Si, Arunava De, Anup Kumar Bhattacharjee . Grammatical Swarm based Segmentation Methodology for Lesion Segmentation in Brain MRI. International Journal of Computer Applications. 121, 4 ( July 2015), 1-8. DOI=10.5120/21525-4481

@article{ 10.5120/21525-4481,
author = { Tapas Si, Arunava De, Anup Kumar Bhattacharjee },
title = { Grammatical Swarm based Segmentation Methodology for Lesion Segmentation in Brain MRI },
journal = { International Journal of Computer Applications },
issue_date = { July 2015 },
volume = { 121 },
number = { 4 },
month = { July },
year = { 2015 },
issn = { 0975-8887 },
pages = { 1-8 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume121/number4/21525-4481/ },
doi = { 10.5120/21525-4481 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:07:32.540606+05:30
%A Tapas Si
%A Arunava De
%A Anup Kumar Bhattacharjee
%T Grammatical Swarm based Segmentation Methodology for Lesion Segmentation in Brain MRI
%J International Journal of Computer Applications
%@ 0975-8887
%V 121
%N 4
%P 1-8
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents Grammatical Swarm based segmentation methodology for lesion detection in brain's magnetic resonance image. In the proposed methodology, images are denoised using median filter at the outset. Secondly, images are segmented using Grammatical Swarm based hard-clustering technique. Finally, lesions are extracted from the segmented images. The proposed methodology is applied on six Axial-T2 magnetic resonance images and compared with Particle Swarm Optimizer, K-Means and FCM based segmentation methods using quantitative performance measurement index. The experimental results show that the proposed methodology statistically outperforms other methods.

References
  1. Paul M. Parizel , Luc van den Hauwe , Frank De Belder , J. Van Goethem , CarolinVenstermans , Rodrigo Salgado , Maurits Voormolen , and Wim Van Hecke: Magnetic Resonance Imaging of the Brain, P. Reimer et al. (eds. ): Clinical MR Imaging, Springer-Verlag Berlin Heidelberg,2010.
  2. L. Tonarelli: Magnetic Resonance Imaging of Brain Tumor, CEwebsource. com, 2013.
  3. A. De, A. K. Bhattacharjee and C. K. Chanda and B. Maji: Hybrid Particle Swarm Optimization With Wavelet Mutation Based Segmentation and Progressive Transmission Technique For MRI Images, International Journal of Innovative Computing, Information and Control, Vol. 8,No. 7(B), pp. 5179– 5197, 2012.
  4. A. De, A. K. Bhattacharjee and C. K. Chanda and B. Maji: Entropy Maximization Based Segmentation, Transmission and Wavelet Fusion of MRI Images, International Journal of Hybrid Intelligent Systems,IO Press,Vol. 10, pp. 57–69, 2013.
  5. J. Alirezaie, M. E. Jernigan, and C. Nahmias: Neural Network based Segmentation of Magnetic Resonance Images of the Brain, IEEE Transactions on Nuclear Science, Vol. 44, Issue 2, pp. 194–198, 1997.
  6. M. A. Balafar, A. R. Ramli, M. I. Saripan and S. Mashohor: Review of brain MRI image segmentation methods, Artif. Intell. Rev. ,Vol. 33 pp. 261–274, 2010.
  7. M. A. Balafar, A. R. Ramli, and S. Mashohor: A new method for MR grayscale inhomogeneity correction, Artif. Intell. Rev. ,Vol. 34 pp. 195–204, 2010.
  8. W. M. Wells et al. : Adaptive Segmentation of MRI Data, IEEE Transaction on Medical Imaging, Vol. 15, No. 4, pp. 429–442, 1996.
  9. M. C. Clark, L. O. Hall, D. B. Goldgof, R. Velthuizen, F. R. Murtagh, and M. S. Silbiger: Automatic Tumor Segmentation Using Knowledge-Based Techniques, IEEE Transaction on Medical Imaging, Vol. 17, No. 2 pp. 187–201, 1998.
  10. S. Saha and S. Bandyopadhyay, MRI Brain Image Segmentation by Fuzzy Symmetry Based Genetic Clustering Technique, IEEE Congress on Evolutionary Computation, Singapore pp. 4417–4424, 2007.
  11. M. Y. Siyal and L. Yu: An intelligent modified fuzzy c-means based algorithm for bias estimation and segmentation of brain MRI, Pattern Recognition Letters, 26, pp. 2052–2062, 2005.
  12. A. Dasgupta: Demarcation of Brain Tumor Using Modified Fuzzy CMeans, International Journal of Engineering Research and Applications,Vol. 2, Issue. 4, pp. 529–533, 2012.
  13. A. De, R. L. Das, A. K. Bhattacharjee and D. Sharma: Masking based Segmentation of Diseased MRI Images, IEEE Inter-national Conference on Information Science and Applications (ICISA), Seol, South Korea pp. 1–7, 2010.
  14. S. Sindhumol, Anil Kumar and Balakrishnan Kannan, Automated Brain Tissue Classification by Multisignal Wavelet Decomposition and Independent Component Analysis, ISRN Biomedical Imaging, Hindawi Publishing Corporation, Volume 2013, pp. 1–10.
  15. Y. Kong, Y. Deng, and Q. Dai, Discriminative Clustering and Feature Selection for Brain MRI Segmentation, IEEE Signal Processing Letters, Vol. 22, No. 5(2015), 573–577.
  16. A. Islam, S. M. S. Reza, and K. M. Iftekharuddin, Multifractal Texture Estimation for Detection and Segmentation of Brain Tumors, IEEE Transactions on Biomedical Engineering, Vol. 60, No. 11(2013), 3204–3215.
  17. T. Wang, I. Cheng and A. Basu, Fluid Vector Flow and Applications in Brain Tumor Segmentation, IEEE Transactions on Biomedical Engineering, Vol. 56, No. 3(2009), 781–789.
  18. M. Huang, W. Yang, Y. Wu, J. Jiang, W. Chen and Q. Feng, Brain Tumor Segmentation Based on Local Independent Projection-Based Classification, IEEE Transactions on Medical Imaging, Vol. 61, No. 10, 2014, pp. 2633–2645.
  19. E. S. A. E. Dahshan, H. M. Mohsen, K. Revett, A. B. M. Salem, Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm, Expert Systems with Applications 41 (2014), 5526–5545.
  20. M. S. Yang, K. C. R Lin, H. C. Liu and J. F. Lirng, Magnetic resonance imaging segmentation techniques using batch-type learning vector quantization algorithms, Magnetic Resonance Imaging 25(2007),Elsevier, 265-277
  21. N. Zhang, S. Ruan,S. Lebonvallet, Q. Liao and Y. Zhu, Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation, Computer Vision and Image Understanding 115 (2011), pp. 256-269
  22. T. Si, A. De and A. K. Bhattacharjee: Brain MRI Segmentation for Tumor Detection using Grammatical Swarm Based Clustering Algorithm , IEEE International Conference on Circuit, Power and Computing Technologies, Tamilnadu, India, pp. 1196–1201, 2014.
  23. M. G. H. Omran, A. Salman and A. P. Engelbrecht: Image classification using Particle Swarm Optimization, Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning, Volume 1, Pages 18-22.
  24. J. C. Bezdek and N. R. Pal: Some New Indexes for Cluster Validity, IEEE Transactions on System, Man, and Cybernetics, Part B, Vol. 28, 301–315, 2007.
  25. P. Maji and S. K. Pal: Rough Set Based Generalized Fuzzy CMeans Algorithm and Quantitative Indices, IEEE Trans. On Systems, Man, and Cybernetics–Part B: Cybernetics, Vol. 37, No. 6, pp. 1529–1540, 2007.
  26. M. O'Neill, A. Brabazon: Grammatical Swarm: The Generation of Programs by Social Programming, Natural Computing 5(4),pp. 443–462.
  27. R. Xu and D. C. Wunsch: Survey of Clustering Algorithms, IEEE Transaction On Neural Networks, Vol. 16, No. 3, pp. 645–678, 2005.
  28. R. Xu and D. C. Wunsch: Clustering Algorithms in Biomedical Research: A Review, IEEE Reviews In Biomedical Engineering, pp. 120–154, 2010.
  29. J. MacQueen: Some methods for classification and analysis of multivariate observations, in Proc. 5th Berkeley Symp. Math. Stat. Probability, 1967, pp. 281–297.
  30. J. C. Bezdek, R. Ehrlich, and W. Full: FCM: The Fuzzy c–Means Clustering Algorithm, Computers & Geosciences, U. S. A, Vol. 10, No. 2-3, pp. 191–203(1984).
  31. S. J. Nanda and G. Panda: A survey on nature inspired metaheuristic algorithms for partitional clustering, Swarm and Evolutionary Computation, Vol. 16, pp. 1-18, 2014
  32. E. Hancer, C. Ozturk and D. Karaboga: Extraction of Brain Tumors from MRI Images with Artificial Bee Colony based Segmentation Methodology, 2013 8th IEEE International Conference on Electrical and Electronics Engineering (ELECO), pp. 516–520, 2013, DOI: 10. 1109/ELECO. 2013. 6713896
  33. J. Kennedy and R. C. Eberhart: Particle swarm optimization, In proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ. pp. 1942–1948, 1995
  34. Y. Shi and R. C. Eberhart: A modified particle swarm optimizer. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1998), Piscataway, NJ. pp. 69–73, 1998
  35. J. Derrac, S. Garcia, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm and Evolutionary Computation,1, 3-18(2011)
Index Terms

Computer Science
Information Sciences

Keywords

Brain Magnetic resonance image Lesion Segmentation Clustering Grammatical swarm Particle swarm optimizer