CFP last date
20 March 2024
Reseach Article

Analysis of Total Average Cost for MX(m,N)/M/1/BD/MV with Fuzzy Parameters using Robust Ranking Technique

by K.julia Rose Mary, G. Majula Christina
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 121 - Number 24
Year of Publication: 2015
Authors: K.julia Rose Mary, G. Majula Christina

K.julia Rose Mary, G. Majula Christina . Analysis of Total Average Cost for MX(m,N)/M/1/BD/MV with Fuzzy Parameters using Robust Ranking Technique. International Journal of Computer Applications. 121, 24 ( July 2015), 1-4. DOI=10.5120/21870-4362

@article{ 10.5120/21870-4362,
author = { K.julia Rose Mary, G. Majula Christina },
title = { Analysis of Total Average Cost for MX(m,N)/M/1/BD/MV with Fuzzy Parameters using Robust Ranking Technique },
journal = { International Journal of Computer Applications },
issue_date = { July 2015 },
volume = { 121 },
number = { 24 },
month = { July },
year = { 2015 },
issn = { 0975-8887 },
pages = { 1-4 },
numpages = {9},
url = { },
doi = { 10.5120/21870-4362 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
%0 Journal Article
%1 2024-02-06T23:07:15.911146+05:30
%A K.julia Rose Mary
%A G. Majula Christina
%T Analysis of Total Average Cost for MX(m,N)/M/1/BD/MV with Fuzzy Parameters using Robust Ranking Technique
%J International Journal of Computer Applications
%@ 0975-8887
%V 121
%N 24
%P 1-4
%D 2015
%I Foundation of Computer Science (FCS), NY, USA

This paper proposes the procedure to find out the total average cost in terms of crisp values for MX(m,N)/M/1/BD/MV with fuzzy parameters. In which arrival rate, service rate, batch size, setup, vacation, breakdown, repair rates, and the start up ,build up, holding, setup, dormant, breakdown costs and cost for busy and vacation periods are all considered as trapezoidal fuzzy numbers. As ranking technique is a systematic procedure and plays a vital role in decision making under fuzzy environment, Robust ranking technique is applied for the MX(m,N)/M/1/BD/MV model with fuzzy parameters. Numerical example is also presented to elucidate the validity of the proposed system.

  1. Chen. S. P(2005) "Parametric nonlinear programming approach to fuzzy queues with bulk service",European Journal of Operational Research,Vol. 163, pp. 434-444.
  2. Choobinesh. F and Li. H(1993), " An index for ordering fuzzy numbers",Fuzzy numbers and System,Vol 54,pp. 143-161.
  3. Choudhury. G and Paul. M(2006), "A batch arrival queue with a second optional service channel under N-policy", Stochastic Analysis and Application,Vol 24,pp. 1-12.
  4. Julia Rose Mary and Shanmugapriya(2014), "Optional operating policy of ?FM?_((m,N))^X/GSOS/1/MV", International journal of computer application,Vol 1,issue4,pp. 199-207.
  5. Julia Rose Mary and Angel Jenitta (2014), "Evaluation of total average cost of Mx(m,N)/M/1/BD/SV with fuzzy parameter using Robust Ranking Technique", National Annual Research Congress (2014)
  6. Kao C,Li. C and Chen. S(1993) "Parametric programming to the analysis of fuzzy queues",Fuzzy Sets and System,107,pp. 93-100.
  7. Ke. J. C,(2004) "Bi-level control for batch arrival queues with an early setup and un-reliable server" Appl. Math. Modeling,Vol 28, pp. 469-485.
  8. Lee. H. S and Srinivasan. M. M(1989), "Control policies for the MX/G/1 queuing system", Manege. Sci,35(6),pp. 708-721.
  9. Lee H. W,Lee S. S and Chae K. C(1994), "Operating Characteristics of MX/G/1 queue with N-policy", Queuing system 15,pp. 387-399.
  10. Lee H. W,Lee S. S,Yoon S. H and Chae K. C(1995) "Batch arrival queue with N-policy and single vacations" Coput. Oper. Res,22(2),pp. 173-189.
  11. Lee H. W and Park J. O(1997) " Optimal strategy in N-policy Production system with early setup", J. Oper. Res. Soc,48,pp. 306-313.
  12. Lee H. W, Park J. O, Kim B. K,Yoon S. H,Ahn B. Y and Park N. I(2004), "Queue length and waiting time analysis of batch arrival queue with bi level control", Appl. Math. Modeling,28,pp. 469-485
  13. Li RJ and Lee ES(1989), Analysis of fuzzy queues, Computers and Mathematics with applications;vol 17(7),pp. 1143-1147
  14. Nagi D. S and Lee E. S(1992), Analysis and simulation of fuzzy queues, Fuzzy sets and systems,46,pp. 321-330
  15. A. Nagoor Gani and V. Ashok Kumar(2009), "A Bulk arrival queuing model with fuzzy parameters and fuzzy varying batch size", vol. 2,no. 3
  16. Nagarjan & Solairaju(2010), "Computing Improved fuzzy optimal Hungarian assignment problems with fuzzy costs under robust ranking techniques", vol. 6,no. 13,pp. 6-13.
  17. Neuts M. F(1984), "The M/G/1 queue with limited number of admission or a limited admission period during each service time", Technical Report No. 978,University of Delawara.
  18. Palapandi. B, Geethamani. G(, "Evaluation of performance of bulk arrival queue with fuzzy parameters using robust ranking technique", International journal of computing engineering research, vol 03,issue 10,pp. 53-57.
  19. Rue R. c and Roshan Shine(1981), " Some properties of optimal control for entries to an M/M/1 queue", Naval Research logistic quarterly,28,pp. 520-532.
  20. Stidham. S(1985), "Optimal control of admission to a queuing system",IEEE Trans,Automat controal,30,pp. 705-713.
  21. Yadin. M and Naor. P(1963), "Queuing system with a removable service station" Oper. Res. Q. ,14,pp. 393-405.
  22. Yager R. R and Chen S. P(1981) "A procedure for ordering fuzzy subsets of the unit interval,Information Science,vol. 24,pp. 143-161.
  23. Zimmermann HF(2001). Fuzzy set theory and its application, Fourth edition K luwernijhoff, Boston.
Index Terms

Computer Science
Information Sciences


Bi-Level Threshold policy buildup period Dormant period Breakdown Multiple vacations Fuzzy sets (Normal convex) Trapezoidal fuzzy number Membership function and Fuzzy ranking.