CFP last date
20 December 2024
Reseach Article

Exponential Lomax Distribution

by A. H. El-bassiouny, N. F. Abdo, H. S. Shahen
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 121 - Number 13
Year of Publication: 2015
Authors: A. H. El-bassiouny, N. F. Abdo, H. S. Shahen
10.5120/21602-4713

A. H. El-bassiouny, N. F. Abdo, H. S. Shahen . Exponential Lomax Distribution. International Journal of Computer Applications. 121, 13 ( July 2015), 24-29. DOI=10.5120/21602-4713

@article{ 10.5120/21602-4713,
author = { A. H. El-bassiouny, N. F. Abdo, H. S. Shahen },
title = { Exponential Lomax Distribution },
journal = { International Journal of Computer Applications },
issue_date = { July 2015 },
volume = { 121 },
number = { 13 },
month = { July },
year = { 2015 },
issn = { 0975-8887 },
pages = { 24-29 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume121/number13/21602-4713/ },
doi = { 10.5120/21602-4713 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:08:21.235273+05:30
%A A. H. El-bassiouny
%A N. F. Abdo
%A H. S. Shahen
%T Exponential Lomax Distribution
%J International Journal of Computer Applications
%@ 0975-8887
%V 121
%N 13
%P 24-29
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, A new distribution called Exponential Lomax distribution is introduced. It is seemed that the parameter values of our new distribution are depending on decreasing and upside-down bathtub failure rate function. Also, the statistical properties of this model are studied, such as, quantiles, moments, mean deviation. Moreover, maximum likelihood estimators of it's parameters are discussed. Finally, the procedure is illustrated by real data set. It is shown that the introduced model is more competitive than other models.

References
  1. Abdul-Moniem, I. B. 2012. Recurrence realtions for moments of lower generalized order statistics from exponentiated Lomax distribution and its characterization, International Journal of Mathematical Archive 3, 2144–2150.
  2. Ahsanullah, M. 1991. Recoed values of the Lomax distribution, Statistica Neerlandica 45, 21–29.
  3. Amin, E. A. 2011. Kth upper record values and their moments, International Mathematical Forum 6, 3013–3021.
  4. Arnold, B. C. 1983. Pareto Distributions (International Cooperative Publishing House, Maryland).
  5. Atkinson, A. B. and Harrison, A. J. 1978. Distribution of Personal Wealth in Britain (Cambridge University Press, Cambridge).
  6. Balakrishnan, N. and Ahsanullah, M. 1994. Relations for single and product moments of record values from Lomax distribution, Sankhya Series B 17, 140 146
  7. Balkema, A. A. and de Hann, L. 1974. Residual life at great age, Annals of Probability 2, 972–804.
  8. Bryson, M. C. 1974. Heavy-tailed distribution: properties and tests, Technometrics 16, 161–68.
  9. Campbell, G. and Ratnaparkhi, M. V. 1993. An application of Lomax distributions in receiver operating characteristic (ROC) curve analysis, Communications in Statistics–Theory Methods 22, 1681–1697.
  10. Corbellini, A. , Crosato, L. , Ganugi, P and Mazzoli, M. 2007. Fitting Pareto II distributions on …rm size: Statistical methodology and economic puzzles. Paper presented at the International Conference on Applied Stochastic Models and Data Analysis, Chania, Crete.
  11. Chahkandi, M. and Ganjali, M. 2009. On some lifetime distributions with decrasing failure rate, Computational Statistics and Data Analysis 53, 4433–4440.
  12. Cordeiro, G. M. , Ortega, E. M. M. and Popovi´c, B. V. 2013. The gamma-Lomax distribution, Journal of Statistical computation and Simulation iFirst, doi:10. 1080/00949655. 2013. 822869, 2013
  13. Durbey, S. D. 1970. Compound gamma, beta and F distributions, Metrika 16, 27–31.
  14. Ghitany, M. E. , AL-Awadhi, F. A and Alkhalfan, L. A. 2007. Marshall-Olkin extended Lomax distribution and its applications to censored data, Communications in Statistics–Theory and Methods 36, 1855–1866.
  15. Glanzel, W. 2008. On some new bibliometric applications of statistics related to the h-index, Scientometrics 77, 187–196.
  16. Gupta, R. C. , Ghitany, M. E. and Al-Mutairi, D. K. 2010. Estimation of reliability from Marshall-Olkin extended Lomax distributions, Journal of Statistical Computation and Simulation 80, 937–947.
  17. Harris, C. M. 1968. The Pareto distribution as a queue service descipline, Operations Research 16, 307–313.
  18. Hassan, A. S. and Al-Ghamdi, A. S. 2009. Optimum step stress accelerated life testing for Lomax distibution, Journal of Applied Sciences Research 5, 2153–2164.
  19. Holland, O. , Golaup, A. and Aghvami, A. H. Traffic characteristics of aggregated module downloads for mobile terminal recon…guration, IEE proceedings on Communications 135, 683–690.
  20. Johnson, N. L. , Kotz, S. and Balakrishnan, N. 1994 Contineous Univariate Distributions: Vol. 1, 2nd edition (Wiley, New York).
  21. Kareema, A. K. and Mohommad, A. B. 2013. Exponential Pareto Distribution, Mathematical Theory and Modeling, 2224-5804.
  22. Lee, M-Y. and Lim, E-K. 2009. Characterization of the Lomax, exponential and Pareto distributions by conditional expectations of recoed values, Journal of the Chungcheong Mathematical Society 22, 149–153.
  23. Lemonte, A. J. and Cordeiro, G. M. 2013. An extended Lomax distribution, Statistics 47, 800–816.
  24. Lomax, K. S. 1954. Business failures: Another example of the analysis of failure data, Journal of the American Statistical Association 49, 847–852.
  25. Murthy, D. N. P. Xie, M. and Jiang, R. 2004. Weibull Models (Wiley).
  26. Ramos, M. W. A. , Marinho, P. R. D. , da Silva R. V. and Cordeiro, G. M. 2013. The exponentiated Lomax Poisson distribution with an application to lifetime data, Advances and Applications in Statistics 34, 107–135.
  27. Tadikamalla, P. R. 1980. A look at the Burr and realted distributions, International Statistical Review 48, 337–344.
Index Terms

Computer Science
Information Sciences

Keywords

Exponential Lomax distribution Lomax distribution moments quantiles and Maximum likelihood estimation.