CFP last date
20 January 2025
Reseach Article

Coupled Fixed Point Theorems for W-Compatible Maps Relaxing Continuity in Partially Ordered G-Metric Spaces

by Sunil Kumar, Rakesh Kumar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 120 - Number 23
Year of Publication: 2015
Authors: Sunil Kumar, Rakesh Kumar
10.5120/21397-4442

Sunil Kumar, Rakesh Kumar . Coupled Fixed Point Theorems for W-Compatible Maps Relaxing Continuity in Partially Ordered G-Metric Spaces. International Journal of Computer Applications. 120, 23 ( June 2015), 1-5. DOI=10.5120/21397-4442

@article{ 10.5120/21397-4442,
author = { Sunil Kumar, Rakesh Kumar },
title = { Coupled Fixed Point Theorems for W-Compatible Maps Relaxing Continuity in Partially Ordered G-Metric Spaces },
journal = { International Journal of Computer Applications },
issue_date = { June 2015 },
volume = { 120 },
number = { 23 },
month = { June },
year = { 2015 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume120/number23/21397-4442/ },
doi = { 10.5120/21397-4442 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:06:56.625524+05:30
%A Sunil Kumar
%A Rakesh Kumar
%T Coupled Fixed Point Theorems for W-Compatible Maps Relaxing Continuity in Partially Ordered G-Metric Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 120
%N 23
%P 1-5
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we have established coupled coincidence point results for pair of mappings in partially ordered G-metric spaces. We have defined w-compatibility in this context to ensure the uniqueness of the coupled common fixed point. There are several corollaries which extend some known results of coupled coincidence points and coupled fixed points. The main theorem is illustrated with an example. The example demonstrates that our main result is an actual improvement over the results which are generalized.

References
  1. M. Abbas and B. E. Rhoades, Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. Computation. 215 (2009) 262–269.
  2. M. Abbas, M. A. Khan and S. Radenovi´c, Common coupled fixed point theorem in cone metric space for w-compatible mappings, Appl. Math. Computation. (217) (2010) 195–202.
  3. M. Abbas, A. R. Khan and T. Nazir, Coupled common fixed point results in two generalized metric spaces, Appl. Math. Comput. (2011), doi:10. 1016/j. amc. 2011. 01. 006.
  4. H. Aydi, B. Samet and C. Vetro, Coupled fixed point results in cone metric spaces for ~ w-compatible mappings, Accepted in Fixed Point Theory Appl. , 2011, 2011:27 doi:10. 1186/1687-1812-2011-27.
  5. H. Aydi, B. Damjanovi´c, B. Samet, W. Shatanawi, Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces, Mathematical and Computer Modelling, Volume 54, Issues 9-10, November 2011, Pages 2443-2450.
  6. T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis. 65 (2006) 1379– 1393.
  7. R. Chugh, T. Kadian, A. Rani, B. E. Rhoades, Property P in G-metric spaces, Fixed Point Theory Appl, Vol 2010, Article ID 401684, 12 pages, 2010.
  8. B. S. Choudhury and A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Analysis. 73 (2010) 2524–2531.
  9. B. S. Choudhury and P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Modelling. (2011) doi:10. 1016/j. mcm. 2011. 01. 036.
  10. Lj. C´ iric´, N. Cakic´, M. Rajovic´ and J. S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl, Vol 2008, Article ID 131294, 11 pages, 2008.
  11. Lj. C´ iric´, D. Mihet and R. Saadati, Monotone generalized contractions in partially ordered probabilistic metric spaces, Topology Appl. 156 (17) (2009) 2838–2844.
  12. B. C. Dhage, Generalized metric space and mapping with fixed point, Bull. Cal. Math. Soc. 84 (1992) 329–336.
  13. B. C. Dhage, Generalized metric spaces and topological structure I, An. Stiint. Univ. Al. I. Cuza Iasi. Mat(N. S) 46 (2000) 3–24.
  14. B. C. Dhage, On generalized metric spaces and topological structure II, Pure Appl. Math. Sci. 40 (1-2) (1994) 37–41.
  15. B. C. Dhage, On continuity of mappings in D-metric spaces, Bull. Calcutta Math. Soc. 86 (6)(1994) 503–508.
  16. V. Lakshmikantham and Lj. C´ iric´, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis. 70 (2009) 4341–4349.
  17. Z. Mustafa, A new structure for generalized metric spaces with applications to fixed point theory, Ph. D. thesis, The University of Newcastle, Callaghan, Australia, 2005.
  18. Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete Gmetric spaces, Fixed Point Theory Appl, Vol 2008, Article ID 189870, 12 pages, 2008.
  19. Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2) (2006) 289–297.
  20. Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, in Proceedings of the International Conference on Fixed Point Theory and Applications, pp. 189–198, Yokohama, Japan, 2004.
  21. Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl, Vol 2009, Article ID 917175, 10 pages, 2009.
  22. Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric spaces, Int. J. Math. Math. Sci, Vol 2009, Article ID 283028, 10 pages, 2009.
  23. A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Pror. Amer. Math. Soc. 132 (2004) 1435–1443.
  24. R. Saadati, S. M. Vaezpour, P. Vetro, and B. E. Rhoades, Fixed point theorems in generalized partially ordered G?? metric spaces, Math. Comput. Modelling. 52(2010) 797–801.
  25. W. Shatanawi, Fixed point theory for contractive mappings satisfying -maps inG-metric spaces, Fixed Point Theory Appl, Volume 2010, Article ID 181650, 9 pages, 2010.
  26. W. Shatanawi, Partially ordered cone metric spaces and coupled fixed point results, Comput. Math. Appl. 60 (2010) 2508–2515.
Index Terms

Computer Science
Information Sciences

Keywords

Partially ordered set coupled coincidence point mixed gmonotone property compatible mappings w-compatible mappings.