CFP last date
20 December 2024
Reseach Article

Towards Understanding Egyptian Arabic Dialogues

by Abdelrahim A. Elmadany, Sherif M. Abdou, Mervat Gheith
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 120 - Number 22
Year of Publication: 2015
Authors: Abdelrahim A. Elmadany, Sherif M. Abdou, Mervat Gheith
10.5120/21390-4427

Abdelrahim A. Elmadany, Sherif M. Abdou, Mervat Gheith . Towards Understanding Egyptian Arabic Dialogues. International Journal of Computer Applications. 120, 22 ( June 2015), 7-12. DOI=10.5120/21390-4427

@article{ 10.5120/21390-4427,
author = { Abdelrahim A. Elmadany, Sherif M. Abdou, Mervat Gheith },
title = { Towards Understanding Egyptian Arabic Dialogues },
journal = { International Journal of Computer Applications },
issue_date = { June 2015 },
volume = { 120 },
number = { 22 },
month = { June },
year = { 2015 },
issn = { 0975-8887 },
pages = { 7-12 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume120/number22/21390-4427/ },
doi = { 10.5120/21390-4427 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:07:04.617507+05:30
%A Abdelrahim A. Elmadany
%A Sherif M. Abdou
%A Mervat Gheith
%T Towards Understanding Egyptian Arabic Dialogues
%J International Journal of Computer Applications
%@ 0975-8887
%V 120
%N 22
%P 7-12
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Labelling of user's utterances to understanding his attends which called Dialogue Act (DA) classification, it is considered the key player for dialogue language understanding layer in automatic dialogue systems. In this paper, we proposed a novel approach to user's utterances labeling for Egyptian spontaneous dialogues and Instant Messages using Machine Learning (ML) approach without relying on any special lexicons, cues, or rules. Due to the lack of Egyptian dialect dialogue corpus, the system evaluated by multi-genre corpus includes 4725 utterances for three domains, which are collected and annotated manually from Egyptian call-centers. The system achieves F1 scores of 70. 36% overall domains.

References
  1. Elmadany, A. A. , Abdou, S. M. , Gheith, M. : Recent Approaches to Arabic Dialogue Acts Classifications. 4th International Conferences on Natural Language Processing (NLP-2015) - Computer Science & Information Technology (CS & IT) Series 5, 117–129 (2015)
  2. Stolcke, A. , Ries, K. , Coccaro, N. , Shriberg, E. , Bates, R. , Jurafsky, D. , Taylor, P. , Martin, R. , Ess-Dykema, C. V. , Meteer, M. : Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech. Computational Linguistics 26, 339-373 (2000)
  3. Webb, N. : Cue-Based Dialogue Act Classification. Department of Computer Science. University of Sheffield, England (2010)
  4. Traum, D. , Heeman, P. A. : Utterance units in spoken dialogue. Dialogue processing in spoken language systems, pp. 125-140. Springer, Berlin Heidelberg (1997)
  5. Graja, M. , Jaoua, M. , Belguith, L. H. : Discriminative Framework for Spoken Tunisian Dialect Understanding. 2nd International Conference on Statistical Language and Speech Processing, SLSP 2014, pp. 102–110. (2013)
  6. Pasha, A. , Al-Badrashiny, M. , Diab, M. , Kholy, A. E. , Eskander, R. , Habash, N. , Pooleery, M. , Rambow, O. , Roth, R. M. : MADAMIRA: A Fast, Comprehensive Tool for Morphological Analysis and Disambiguation of Arabic. Language Resources and Evaluation Conference (LREC 2014), pp. , (2014)
  7. Elmahdy, M. , Rainer, G. , Wolfgang, M. , Slim, A. : Survey on common Arabic language forms from a speech recognition point of view. In proceeding of International conference on Acoustics (NAG-DAGA), pp. 63-66. (2009)
  8. Zaidan, O. F. , Callison-Burch, C. : Arabic dialect identification. Computational Linguistics 52, (2012)
  9. Zaghouani, W. : Critical Survey of the Freely Available Arabic Corpora. In proceeding of Workshop on Free/Open-Source Arabic Corpora and Corpora Processing Tools (LREC2014). (2014)
  10. Elmadany, A. A. , Abdou, S. M. , Gheith, M. : Turn Segmentation into Utterances for Arabic Spontaneous Dialogues and Instant Messages. International Journal on Natural Language Computing (IJNLC) 4, 111-123 (2015)
  11. Elmadany, A. A. , Abdou, S. M. , Gheith, M. : JANA: An Arabic Human-Human Dialogues Corpus. IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS), pp. IEEE, (2015)
  12. Elmadany, A. A. , Abdou, S. M. , Gheith, M. : Arabic Inquiry-Answer Dialogue Acts Annotation Schema. IOSR Journal of Engineering (IOSRJEN) 04, 32-36 (2014)
  13. Webb, N. , Hardy, H. : Data-Driven Language Understanding for Spoken Language Dialogue. American Association for Arti?cial (2005)
  14. Seneff, S. , Hirschman, L. , Zue, V. W. : Interactive Problem Solving and Dialogue in the ATIS Domain. In proceeding of HLT '91: Proceedings of the Workshop on Speech and Natural Language, pp. 354-359. (1991)
  15. Pellom, B. , Ward, W. , Hansen, J. , Cole, R. , Hacioglu, K. , Zhang, J. , Yu, X. , Pradhan, S. : University of Colorado Dialog Systems for Travel and Navigation. In proceeding of HLT '01: Proceedings of the First International Conference on Human Language Technology Research. (2001)
  16. Wahlster, W. : Verbmobil: Foundations of Speech-To-Speech Translation. Springer (2000)
  17. Hardy, H. , Strzalkowski, T. , Wu, M. , Ursu, C. , Webb, N. , Biermann, A. , Inouye, R. , McKenzie, A. : Data-driven strategies for an automated dialogue system. In proceeding of the 42nd Annual Meeting on Association for Computational Linguistics. (2004)
  18. Webb, N. , Hepple, M. , Wilks, Y. : Dialogue Act Classification Based on Intra-Utterance Features. In proceeding of the AAAI Work-shop on Spoken Language Understanding. (2005)
  19. Boyer, K. , Ha, E. , Pillips, R. , Wallis, M. , Vouk, M. , Laster, J. : Dialogue Act Modleing in a Complex Task-Orinted Domain. In proceeding of SIGDIAL, pp. 297-305. (2010)
  20. Samuel, K. , Carberry, S. , Vijay-Shanker, K. : Dialogue act tagging with transformation-based learning. In proceeding of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics. (1998)
  21. Grau, S. , Sanchis, E. , Castro, M. , Vilar, D. : Dialogue Act Classi?cation using a Bayesian Approach. In proceeding of 9th Conference Speech and Computer. (2004)
  22. Shala, L. , Rus, V. , Graesser, A. : Automatic Speech Act Classification In Arabic. In proceeding of Subjetividad y Procesos Cognitivos Conference pp. 284-292. (2010)
  23. Bahou, Y. , Belguith, L. H. , Hamadou, A. B. : Towards a Human-Machine Spoken Dialogue in Arabic. In proceeding of Workshop on HLT & NLP within the Arabic world: Arabic Language and local languages processing: Status Updates and Prospects, at the 6th Language Resources and Evaluation Conference (LREC'08). (2008)
  24. Lhioui, C. , Zouaghi, A. , Zrigui, M. : A Combined Method Based on Stochastic and Linguistic Paradigm for the Understanding of Arabic Spontaneous Utterances. In proceeding of CICLing 2013, Computational Linguistics and Intelligent Text Processing Lecture Notes in Computer Science, pp. 549-558. Springer-Verlag Berlin Heidelberg, (2013)
  25. Hijjawi, M. , Bandar, Z. , Crockett, K. : User's Utterance Classification Using Machine Learning for Arabic Conversational Agents. In proceeding of 5th International Conference on Computer Science and Information Technology (CSIT), pp. 223-232. IEEE, (2013)
  26. Hijjawi, M. , Bandar, Z. , Crockett, K. , Mclean, D. : ArabChat: an Arabic Conversational Agent. In proceeding of 6th International Conference on Computer Science and Information Technology (CSIT), pp. 227-237. IEEE Computer Society, (2014)
  27. Elmadany, A. A. , Abdou, S. M. , Gheith, M. : A Survey of Arabic Dialogues Understanding for Spontaneous Dialogues and Instant Message. International Journal on Natural Language Computing (IJNLC) 4, 75-94 (2015)
  28. Kudo, T. , Matsumoto, Y. : Chunking with support vector machines. In proceeding of NAACL-01. (2001)
  29. Kudo, Y. , Matsumoto, Y. : Use of Support Vector Learning for Chunk Identification In proceeding of CoNLL, pp. 142-144. (2000)
  30. Meselhi, M. A. , Bakr, H. M. A. , Ziedan, I. , Shaalan, K. : A Novel Hybrid Approach to Arabic Named Entity Recognition. The 10th China Workshop on Machine Translation (CWMT 2014), pp. 93–103. (2014)
  31. Pradhan, S. , Hacioglu, K. , Krugler, V. , Ward, W. , Martin, J. H. , Jurafsky, D. : Support vector learning for semantic argument classification. Machine Learning 60 Machine Learning, 11-39 (2005)
  32. Ramshaw, L. A. , Marcus, M. P. : Text Chunking Using Transformation-based Learning. In proceeding of the Third ACL Workshop on Very Large Corpora (WVLC 1995). (1995)
  33. Kim, S. N. , Cavedon, L. , Baldwin, T. : Classifying dialogue acts in one-on-one live chats. In proceeding of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2010), pp. 862–871. (2010)
  34. Ivanovic, E. : Automatic utterance segmentation in instant messaging dialogue. In proceeding of The Australasian Language Technology Workshop, pp. 241-249. (2005)
  35. Ivanovic, E. : Automatic instant messaging dialogue using statistical models and dialogue acts. Faculty of Engineering, Computer Science and Software Engineering. University of Melbourne (2008)
  36. Sridhara, V. K. R. , Bangaloreb, S. , Narayanana, S. : Combining lexical, syntactic and prosodic cues for improved online dialog act tagging. Computer Speech & Language 23, 407–422 (2009)
  37. Eugenio, B. D. , Xie, Z. , Serafin, R. : Dialogue act classification, higher order dialogue structure, and instance-based learning. Dialogue and Discourse 1, 1-24 (2010)
Index Terms

Computer Science
Information Sciences

Keywords

Dialogue Act Classification Arabic Dialogue Understanding Egyptian Arabic Dialect Arabic Instant Messages.