CFP last date
20 January 2025
Reseach Article

Automatic Identification of Hard Exudates in Retinal Fundus Images using Techniques of Information Retrieval

by Kemal Akyol, Baha Sen, Safak Bayir
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 120 - Number 13
Year of Publication: 2015
Authors: Kemal Akyol, Baha Sen, Safak Bayir
10.5120/21286-4236

Kemal Akyol, Baha Sen, Safak Bayir . Automatic Identification of Hard Exudates in Retinal Fundus Images using Techniques of Information Retrieval. International Journal of Computer Applications. 120, 13 ( June 2015), 11-16. DOI=10.5120/21286-4236

@article{ 10.5120/21286-4236,
author = { Kemal Akyol, Baha Sen, Safak Bayir },
title = { Automatic Identification of Hard Exudates in Retinal Fundus Images using Techniques of Information Retrieval },
journal = { International Journal of Computer Applications },
issue_date = { June 2015 },
volume = { 120 },
number = { 13 },
month = { June },
year = { 2015 },
issn = { 0975-8887 },
pages = { 11-16 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume120/number13/21286-4236/ },
doi = { 10.5120/21286-4236 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:06:06.700078+05:30
%A Kemal Akyol
%A Baha Sen
%A Safak Bayir
%T Automatic Identification of Hard Exudates in Retinal Fundus Images using Techniques of Information Retrieval
%J International Journal of Computer Applications
%@ 0975-8887
%V 120
%N 13
%P 11-16
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Diabetic retinopathy, a subject of many studies in the medical image processing field since long time, is one of the major complications of diabetes mellitus and it cause blindness. In this study, we proposed a method that consist of keypoint detector-feature extraction-reduction process and classifier stages within the framework of hybrid approach for the detection of hard exudates. This method is divided into two parts: learning and querying. In the learning phase, initially we created visual dictionaries for the representation of pathological or non-pathological regions on retinal images. After, we completed modeling process with the training and testing processes. In the querying phase, keypoints and patch images are obtained with keypoint detector algorithm from new retinal images. Thus, knowledge is obtained by these patch images are classified in the final part of this phase. Experimental validation was performed on DIARETDB1 public database. The obtained results are showed us that positive effects of machine learning technique suggested by us for diagnosis of exudate.

References
  1. Bernardes, R. , Serranho, P. , and Lobo, C. 2011. Digital ocular fundus imaging: A review. Ophthalmologica, 226(4) (Oct. 2011), 161–181.
  2. Mohamed, Q. , Gillies, M. C. and Wong, T. Y. 2007. Management of diabetic retinopathy: A systematic review, The Journal of the American Medical Association, JAWA, 298(8), 902–916.
  3. Venkatesan, R. , Chandakkar, P. , Li, B. , Li, H. K. 2012. Classification of Diabetic Retinopathy Images Using Multi-Class Multiple-Instance Learning Based on Color Correlogram Features, Conf Proc IEEE Eng Med Biol Soc.
  4. Kauppi, T. , Kalesnykiene, V. , Kamarainen, J. K. , Lensu, L. , Sorri, I. , Raninen, A. , Voutilainen, R. , Pietila, J. , Kalviainen, H. , Uusitalo, H. 2007. Diaretdb1 Diabetic Retinopathy Database and Evaluation Protocol, Proceedings of the Medical Image Understanding and Analysis
  5. Chen, X. , Bu, W. , Wu, X. , Dai, B. , Teng, Y. 2012. A novel method for automatic Hard Exudates detection in color retinal images, International Conference on Machine Learning and Cybernetics (ICMLC)
  6. Eadgahi, M. G. F. , Pourreza, H. 2012. Localization of hard exudates in retinal fundus image by mathematical morphology operations, 2nd International Conference on Computer and Knowledge Engineering (ICCKE)
  7. Garcia, M. , Valverde, C. , Lopez, M. I. , Poza, J. , Hornero, R. 2013. Comparison of logistic regression and neural network classifiers in the detection of hard exudates in retinal images, "Engineering in Medicine and Biology Society (EMBC), 35th Annual International Conference of the IEEE"
  8. Fang, G. , Yang, N. , Lu, H. , Li, K. 2010. Automatic segmentation of hard exudates in fundus images based on boosted soft segmentation, International Conference on Intelligent Control and Information Processing (ICICIP)
  9. Hsu, W. , Pallawala, P. M. D. , Mong L. L. , Kah-Guan A. E. 2001. The role of domain knowledge in the detection of retinal hard exudates, Computer Vision and Pattern Recognition, Proceedings of the IEEE Computer Society Conference
  10. Kayal, D. and Banerjee, S. 2014. A new dynamic thresholding based technique for detection of hard exudates in digital retinal fundus image, International Conference on Signal Processing and Integrated Networks (SPIN)
  11. Mishra, A. M. , Singh, P. K. , Chawla, K. S. 2011. An information geometry based scheme for hard exudate detection in fundus Images, India Conference (INDICON)
  12. Ranamuka, N. G. , Meegama, R. G. N. 2013. Detection of hard exudates from diabetic retinopathy images using fuzzy logic, Image Processing, IET 7(2), 121-130.
  13. Sa?nchez, C. I. , Niemeijer, M. , Suttorp Schulten, M. S. A. , Abra?moff, M. , Van Ginneken, B. 2010. Improving hard exudate detection in retinal images through a combination of local and contextual information, International Symposium on Biomedical Imaging: From Nano to Macro
  14. Sanchez, C. I. , Mayo, A. , Garcia, M. , Lopez, M. I. , Hornero, R. 2006. Automatic Image Processing Algorithm to Detect Hard Exudates based on Mixture Models, 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  15. Tjandrasa, H. , Putra, R. E. , Wijaya, A. Y. , Arieshanti, I. 2013. Classification of non-proliferative diabetic retinopathy based on hard exudates using soft margin SVM, IEEE International Conference on Control System, Computing and Engineering (ICCSCE)
  16. Xu, L. and Luo S. 2009. Support vector machine based method for identifying hard exudates in retinal images, IEEE Youth Conference on Information Computing and Telecommunication
  17. Akyol, K. , Bay?r, ?. , ?en, B. , Kaya, H. 2015. Automated Detection of Optic Disc in Retinal Fundus Images using Gabor Filter Kernels, 5th World Conference on Innovation And Computer Sciences
  18. Kaya H. , Çavu?o?lu A. , Çakmak H. B. , ?en B. , Delen D. 2014. Determining the Correct Diagnosis and Appropriate Treatment Method on Keratoconus: a 3D Decision Support Application, Global Conference on Healthcare Systems Engineering (GCHSE)
  19. Yang J. , Jiang Y. G. , Hauptmann A. G. , Ngo C. W. 2007. Evaluating bag-of-visual-words representations in scene classification, Proceeding MIR '07 Proceedings of the international workshop on Workshop on multimedia information retrieval
  20. Mikolajczyk, K. , Schmid C. 2005. A performance evaluation of local descriptors, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10) (Oct 2005), 1615-1630.
  21. Rublee, E. , Rabaud, V. , Konolige, K. , Bradski, G. 2011. "ORB: an efficient alternative to SIFT or SURF", IEEE International Conference on Computer Vision (ICCV)
  22. MacQueen, J. 1967 Some methods for classification and analysis of multivariate observations. University of California Press.
  23. Krig, S. 2014 Computer Vision Metrics: Survey, Taxonomy, and Analysis. Apress Open.
  24. Haykin, S. 2001 Neural Networks: A Comprehensive Foundation. Prentice Hall.
  25. Umesh K. K. and Suresha 2012. Web Image Retrieval Using Visual Dictionary, International Journal on Web Service Computing (IJWSC), 3(3) (September 2012), 77-84.
  26. Breiman L. 2001 Random forests. Machine Learning. University of California.
  27. Bosch, A. , Zisserman, A. , Muoz, X. 2007. Image Classification using Random Forests and Ferns, IEEE 11th International Conference on Computer Vision.
  28. Parikh, R. , Mathai, A. , Parikh, S. , Sekhar G. C. , Thomas, R. 2008. Understanding and using sensitivity, specificity and predictive values, Indian J Ophthalmol, 56(1) (Jan-Feb-2008), 45–50.
  29. Lichode, R. V. , An approach to Enhance Automatic Diagnosis of Diabetic Retinopathy and Classification by Hybrid Multilayer Feed forward Neural Networks by Genetic Algorithm, International Journal of Science, Engineering and Technology Research (IJSETR), 4(4) (April 2015), 2278 – 7798.
Index Terms

Computer Science
Information Sciences

Keywords

Hard Exudates Information Retrieval Keypoint Algorithm Local Descriptors Visual Dictionary Classification.