CFP last date
20 January 2025
Reseach Article

Big Data Frameworks for Efficient Range Queries to Extract Interested Rectangular Sub Regions

by Suleyman Eken, Ahmet Sayar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 119 - Number 22
Year of Publication: 2015
Authors: Suleyman Eken, Ahmet Sayar
10.5120/21372-4423

Suleyman Eken, Ahmet Sayar . Big Data Frameworks for Efficient Range Queries to Extract Interested Rectangular Sub Regions. International Journal of Computer Applications. 119, 22 ( June 2015), 36-39. DOI=10.5120/21372-4423

@article{ 10.5120/21372-4423,
author = { Suleyman Eken, Ahmet Sayar },
title = { Big Data Frameworks for Efficient Range Queries to Extract Interested Rectangular Sub Regions },
journal = { International Journal of Computer Applications },
issue_date = { June 2015 },
volume = { 119 },
number = { 22 },
month = { June },
year = { 2015 },
issn = { 0975-8887 },
pages = { 36-39 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume119/number22/21372-4423/ },
doi = { 10.5120/21372-4423 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:04:47.338053+05:30
%A Suleyman Eken
%A Ahmet Sayar
%T Big Data Frameworks for Efficient Range Queries to Extract Interested Rectangular Sub Regions
%J International Journal of Computer Applications
%@ 0975-8887
%V 119
%N 22
%P 36-39
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A satellite object can consist of more than one mosaic image. To extract any object from remote sensing satellite images, mosaic images need to be stitched. It is critical problem that which mosaics will be selected for image stitching among big mosaic dataset. In this paper, we propose two approaches to overcome mosaic selection problem by means of finding rectangular sub regions intersecting with range query. Former one is based on hybrid of Apache Hadoop and HBase and latter one is based on Apache Lucene. Their effectiveness has been compared in terms of response time under varying number of mosaics.

References
  1. Zhongbin, L. , Wenzhong, S. , Qunming, W. , Zelang M. 2012. Extracting Man-Made Objects From Remote Sensing Images via Fast Level Set Evolutions. IEEE Transactions on Geoscience and Remote Sensing, 53, 2, 883-899.
  2. Eken, S. and Sayar, A. 2015. An automated technique to determine spatio-temporal changes in satellite island images with vectorization and spatial queries. Sadhana, 40, Part 1, pp. 121–137.
  3. Eken, S. and Sayar, A. 2012. Vectorization and Spatial Query Architecture on Island Satellite Images. Procedia Comput. Sci. J. 2: 37–43.
  4. Lee, S. R. 2010. A coarse-to-fine approach for remote-sensing image registration based on a local method. International Journal on Smart Sensing and Intelligent Systems, 3, 690-702.
  5. Wahed, M. , El-tawel, G. S. , El-karim, A. G. 2013. Automatic Image Registration Technique of Remote Sensing Images. International Journal, 4, 177-187.
  6. Manera J. F. , Rodrigez L. , Delrieux, C. , Coppo, R. 2010. Aerial image acquisition and processing for remote sensing. Journal of Computer Science & Technology, 10, 97-103.
  7. Cheng, Y. , Xue, D. , Li, Y. 2007. A fast mosaic approach for remote sensing images. In International Conference on Mechatronics and Automation, Heilongjiang, China, pp. 2009-2013.
  8. Rube, I. E. , Sharkas, M. , Salman, A. , Salem, A. 2011. Automatic Selection of Control Points for Remote Sensing Image Registration Based on MultiScale SIFT. In International Conference on Signal, Image Processing and Applications, Chennai, India.
  9. Wong, A. and Clausi, D. A. 2007. ARRSI: automatic registration of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 45, 1483-1493.
  10. Fonseca, L. M. G. and Manjunath, B. S. 1996. Registration techniques for multisensor remotely sensed imagery. PE & RS- Photogrammetric Engineering & Remote Sensing, 62, 1049-1056.
  11. Danchao, G. , Xiaotao, T. , Shizhong, L. , Guojun, H. 2008. Image registration of high resolution remote sensing based on straight line feature. In International Society for Photogrammetric and Remote Sensing Symposium, pp. 1819-1823.
  12. Palmann, C. , Mavromatis, S. , Sequeira, J. 2008. SAR image registration using a new approach based on the generalized hough transform. ISPRS 2008-Beijing (Chine), XXXVII. Part B7, 145-152.
  13. Sayar, A. , Eken, S. , Mert, U. 2013. Registering LandSat-8 Mosaic Images: A Case Study on the Marmara Sea. In IEEE 10th International Conference On Electronics Computer and Computation, pp. 375-377.
  14. Sayar, A. , Eken, S. , Mert, U. 2014. Tiling of Satellite Images to Capture an Island Object. Communications in Computer and Information Science, 459, pp. 195–204.
  15. Zhanfeng, S. , Jiancheng, L. , Guangyu, H. , Dongping, M. , Weifeng, M. , Hao S. 2007. Distributed computing model for processing remotely sensed images based on grid computing. Information Sciences, 177, 504–518.
  16. Ariel, C. , Zhengguo, S. , Vagelis, H. , Naphtali, R. 2009. Experiences on Processing Spatial Data with MapReduce Scientific and Statistical Database Management, Lecture Notes in Computer Science, 5566, 302-319.
  17. Golpayegani, N. , Halem, M. 2009. Cloud Computing for Satellite Data Processing on High End Compute Clusters. In IEEE International Conference on Cloud Computing, pp. 88-92.
  18. Zhenhua, L. , Yingjie, H. , Haidong, Z. , Jianping, W. , Bo, L. , Hui, Z. 2010. Parallel K-Means Clustering of Remote Sensing Images Based on MapReduce. LNCS 6318, pp. 162–170.
  19. Junfeng, K. , Zhenhong, D. , Xiaosheng, L. 2012. The Framework of Remote Sensing Image Map Service on Hadoop. In National Conference on Information Technology and Computer Science, pp. 868-869.
  20. Mamta, B. , Abhishek, C. , Anshu, P. , Sivakumar, V. 2013. High Performance Computing for Satellite Image Processing and Analyzing – A Review. International Journal of Computer Applications Technology and Research, 2, 4, 424-430.
  21. J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters," Communications of the ACM, (2008) 51(1): 107–113.
  22. Official Hadoop Web Site, 2015, http://hadoop. apache. org/. (2015).
  23. Zaharia, M. , Chowdhury, M. , Franklin, M. J. , Shenker, S. , Stoica, I. 2010. Spark: cluster computing with working set. In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, pp. 1–7.
  24. Lars G. 2011. HBase: The Definitive Guide, Sebastopol, CA: O'Reilly.
  25. Erik H. , Otis G. , Michael M. 2009. Lucene in Action, Manning Publications.
  26. Shubin, Z. , Jizhong, Han. , Zhiyong, L. , Kai, W. , Shengzhong, F. 2009. Spatial Queries Evaluation with MapReduce. In Eighth International Conference on Grid and Cooperative Computing, pp. 287-292.
Index Terms

Computer Science
Information Sciences

Keywords

Image stitching Range query Apache Hadoop HBase Lucene LandSat-8