CFP last date
20 December 2024
Reseach Article

Intraorganelle Nanoporation in Biomedical Application

by S.sarkar, M.k.ghose
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 118 - Number 8
Year of Publication: 2015
Authors: S.sarkar, M.k.ghose
10.5120/20764-3195

S.sarkar, M.k.ghose . Intraorganelle Nanoporation in Biomedical Application. International Journal of Computer Applications. 118, 8 ( May 2015), 14-21. DOI=10.5120/20764-3195

@article{ 10.5120/20764-3195,
author = { S.sarkar, M.k.ghose },
title = { Intraorganelle Nanoporation in Biomedical Application },
journal = { International Journal of Computer Applications },
issue_date = { May 2015 },
volume = { 118 },
number = { 8 },
month = { May },
year = { 2015 },
issn = { 0975-8887 },
pages = { 14-21 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume118/number8/20764-3195/ },
doi = { 10.5120/20764-3195 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:01:07.719564+05:30
%A S.sarkar
%A M.k.ghose
%T Intraorganelle Nanoporation in Biomedical Application
%J International Journal of Computer Applications
%@ 0975-8887
%V 118
%N 8
%P 14-21
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Intraorganlle nanopoation is a highly effective method to increase permeability of intraorganelle membrane under the influences of pico electric pulses and using this technique, we can introduce specific drugs into the intraorganelle of the regid cell like osteoblast. It is also a promising technology in drug delivery system and localization of malignant cancer cell. Till now it is reported that the reversal electroporation suffers from an inability to destroy large volumes of cancer tissue without introduction of cytotoxic elements and increasing the applied electrical field to the harm full level. This restriction can be overcome by using intraorganelle nanoporation which is described here. In this paper we numerically model a micro device used for characterization of osteo intraorganelle nanoporation and different field of bio-medical application.

References
  1. Tsong, T. Y. , 1991. Electroporation of cell-membranes. Biophysical Journal 60(2), 297-306.
  2. Marty, M. , Sersa, G. , Garbay, J. R. , Gehl, J. , Collins, C. G. , Snoj, M. , Billard, V. , Geertsen, P. F. , Larkin, J. O. ,Miklavcic, D. , Pavlovic, I. , Paulin-Kosir, S. M. , Cemazar, M. , Morsli, N. , Rudolf, Z. , Robert, C. , O'Sullivan, G. C. ,Mir, L. M. , 2006. Electrochemotherapy - An easy, highly effective and safe treatment of cutaneous and subcutaneousmetastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Ejc Supplements 4(11), 3-13.
  3. Mir, L. M. , 2006. Electrochemotherapy - An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Ejc Supplements 4(11), 3-13.
  4. Mir, L. M. , Glass, L. F. , Sersa, G. , Teissie, J. , Domenge, C. , Miklavcic, D. , Jaroszeski, M. J. , Orlowski, S. , Reintgen, D. S. , Rudolf, Z. , Belehradek, M. , Gilbert, R. , Rols, M. P. , Belehradek, J. , Bachaud, J. M. , DeConti, R. , Stabuc, B. , Cemazar, M. , Coninx, P. , Heller, R. , 1998. Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. British Journal of Cancer 77(12), 2336-2342.
  5. Mir, L. M. , Gehl, J. , Sersa, G. , Collins, C. G. , Garbay, J. R. , Billard, V. , Geertsen, P. , Rudolf, Z. , O'Sullivan, G. C. ,Marty, M. , 2006. Standard operating procedures of the electrochemotherapy: Instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes. Eur J Cancer S4, 14-25.
  6. Labanauskiene, J. , Gehl, J. , Didziapetriene, J. , 2007. Evaluation of cytotoxic effect of photodynamic therapy in combination with electroporation in vitro. Bioelectrochemistry 70(1), 78-82.
  7. Gothelf, A. , Gehl, J. , 2010. Gene Electrotransfer to Skin; Review of Existing Literature and Clinical Perspectives. Current Gene Therapy 10(4), 287-299.
  8. Andre, F. , Mir, L. M. , 2004. DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Therapy 11, S33-S42.
  9. Buescher, E. S. , Smith, R. R. , Schoenbach, K. H. , 2004. Submicrosecond intense pulsed electric field effects on intracellular free calcium: mechanisms and effects. Plasma Science, IEEE Transactions on 32(4), 1563-1572.
  10. Vernier, P. T. , Sun, Y. H. , Gundersen, M. A. , 2006. Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. Bmc Cell Biology 7.
  11. Vernier, P. T. , Thu, M. M. S. , Marcu, L. , Craft, C. M. , Gundersen, M. A. , 2004. Nanosecond electroperturbation -Mammalian cell sensitivity and bacterial spore resistance. Plasma Science, IEEE Transactions on 32(4), 1620-1625.
  12. Beebe, S. J. , Schoenbach, K. H. , 2005. Nanosecond pulsed electric fields: A new stimulus to activate intracellular signaling. Journal of Biomedicine and Biotechnology(4), 297-300.
  13. Beebe, S. J. , White, J. , Blackmore, P. F. , Deng, Y. P. , Somers, K. , Schoenbach, K. H. , 2003. Diverse effects ofnanosecond pulsed electric fields on cells and tissues. DNA and Cell Biology 22(12), 785-796.
  14. E. Neumann, A. E. Sowers, C. A. Jordan (Eds. ), Electroporation and Electrofusion in Cell Biology, in, Plenum, New York, 1989.
  15. U. Zimmermann, G. A. Neil, in: Electromanipulation of Cells, CRC Press, BocaRaton, 1996.
  16. A. G. Pakhomov, D. Miklavcic, M. S. Markov (Eds. ), Advanced ElectroporationTechniques in Biology in Medicine, CRC Press, Boca Raton, 2010, p. 528.
  17. Irreversible electroporation, in: B. Rubinsky (Ed. ), Series in Biomedical Engineering,Springer-Verlag, Berlin Heidelberg, 2010.
  18. K. H. Schoenbach, S. J. Beebe, E. S. Buescher, Intracellular effect of ultrashort electrical pulses, Bioelectromagnetics 22 (2001) 440–448.
  19. K. H. Schoenbach, Bioelectric effect of intense nanosecond pulses, in: A. G. Pakhomov, D. Miklavcic, M. S. Markov (Eds. ), Advanced Electroporation Techniquesin Biology in Medicine, CRC Press, Boca Raton, 2010, pp. 19–50.
  20. T. R. Gowrishankar, J. C. Weaver, Electrical behavior and pore accumulation in amulticellular model for conventional and supra-electroporation, Biochem. Biophys. Res. Commun. 349 (2006) 643–653.
  21. T. Kotnik, D. Miklavcic, Theoretical evaluation of voltage inducement on internalmembranes of biological cells exposed to electric fields, Biophys. J. 90 (2006) 480–491.
  22. G. L. Craviso, S. Choe, P. Chatterjee, I. Chatterjee, P. T. Vernier, Nanosecond electric Pluses: a novel stimulus for triggering Ca2+ influx into chromaffin cells viavoltage-gated Ca2+ channels, Cell. Mol. Neurobiol. 30 (2010) 1259–1265.
  23. P. T. Vernier, Y. Sun, M. A. Gundersen, Nanoelectropulse-driven membrane perturbation and small molecule permeabilization, BMC Cell Biol. 7 (2006) 37.
  24. A. G. Pakhomov, J. F. Kolb, J. A. White, R. P. Joshi, S. Xiao, K. H. Schoenbach,Long-lasting plasma membrane permeabilization in mammalian cells by nanosecondpulsed electric field (nsPEF), Bioelectromagnetics 28 (2007) 655–663.
  25. A. G. Pakhomov, R. Shevin, J. A. White, J. F. Kolb, O. N. Pakhomova, R. P. Joshi, K. H. Schoenbach, Membrane permeabilization and cell damage by ultrashort electricfield shocks, Arch. Biochem. Biophys. 465 (2007) 109–118.
  26. W. Frey, J. A. White, R. O. Price, P. F. Blackmore, R. P. Joshi, R. Nuccitelli, S. J. Beebe,K. H. Schoenbach, J. F. Kolb, Plasma membrane voltage changes during nanosecondpulsed electric field exposure, Biophys. J. 90 (2006) 3608–3615.
  27. Brighton, C. T. , and S. R. Pollack. 1985. Treatment of recalcitrant non-union with acapacitively coupled electric fields. J. Bone Jt. Surg. 67A:577-585.
  28. Scott, G. and King J. B. 1994. A prospective double-blind trial of electrical capacitivecoupling in the treatment of nonunion of long bones. J. Bone Jt. Surg. 76A:820-826.
  29. . Hall, B. K. 1990. BONE, Volume VII. The Telford Press, Cadwell, New Jersey, USA.
  30. . McLeod, K J. , and C. T. Rubin. 1992. The effect of low frequency electric fields onosteogenesis. Journal of bone and Joint surgery, 74A:920-929.
  31. . Ferrier, J. , S. M. Ross and J. Aubin. 1986. Osteoclasts and osteoblasts migrate inopposite directions in response to a constant electrical field. J. Cell. Physiol. 129:283- 288.
  32. . Brighton C. T. , E. Okereke and R. Pollack. 1992. In vitro bone-Cell response to acapacitively coupled electric field. Clin. Orthop. 285:255-262.
  33. . McLeod, K. J. , B. J. Donahoe, P. E. Levin, M. A. Fontaine and C. T. Rubin. 1993. Electric fields modulate bone cell function in a density-dependent manner. J BoneMiner Res 8:977-984.
  34. . Hartig, M. , U. Joos and H-P Wiesmann. 2000. Capacitively coupled electric fieldsaccelerate proliferation of osteoblasts-like primary cells and increase boneextracellular matrix formation in vitro. Eur Biophys J 29:499-506.
  35. Sher LD, Kresch E, Schwan HP: On the possibility of nonthermal biological effects of pulsed electromagnetic radiation. Biophys J 1970, 10(10):970-979.
  36. Schoenbach KH, Joshi RP, Kolb JF, Chen NY, Stacey M, Blackmore PF, Buescher ES, Beebe SJ: Ultrashort electrical pulses open a new gateway into biological cells. Proceedings of the IEEE 2004,92(7):1122-1137.
  37. S. Sarkar. R. Mahapatra, M. K. Ghosh,"Study of Intra Organelle Nanoporation of Multilayer Dense Osteoblast Cell" International Journal of Computer Applications, Vol. 87(1), pp. 17-22,(2014).
Index Terms

Computer Science
Information Sciences

Keywords

Intraorganele nanoporation pulse electric field micro device membrane pore biomedical application