CFP last date
20 December 2024
Reseach Article

An Adaptive Method for Physical Documents Digitization based on Global Energy Function Parameter

by Ajay Kumar Pal, Yogendra Kumar Jain
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 118 - Number 17
Year of Publication: 2015
Authors: Ajay Kumar Pal, Yogendra Kumar Jain
10.5120/20838-3561

Ajay Kumar Pal, Yogendra Kumar Jain . An Adaptive Method for Physical Documents Digitization based on Global Energy Function Parameter. International Journal of Computer Applications. 118, 17 ( May 2015), 25-32. DOI=10.5120/20838-3561

@article{ 10.5120/20838-3561,
author = { Ajay Kumar Pal, Yogendra Kumar Jain },
title = { An Adaptive Method for Physical Documents Digitization based on Global Energy Function Parameter },
journal = { International Journal of Computer Applications },
issue_date = { May 2015 },
volume = { 118 },
number = { 17 },
month = { May },
year = { 2015 },
issn = { 0975-8887 },
pages = { 25-32 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume118/number17/20838-3561/ },
doi = { 10.5120/20838-3561 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:02:48.156562+05:30
%A Ajay Kumar Pal
%A Yogendra Kumar Jain
%T An Adaptive Method for Physical Documents Digitization based on Global Energy Function Parameter
%J International Journal of Computer Applications
%@ 0975-8887
%V 118
%N 17
%P 25-32
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The first step of physical document analysis system is to digitalize the physical document. Recently number of researcher present numerous techniques that can vary in sensitivity, quality and some more control parameter. This paper presents a three tier framework for physical document digitization and describes an automatic technique for document digitization that can significantly increase the PSNR ratio.

References
  1. Reza Farrahi Moghaddamn , Mohamed Cheriet , 2012 "AdOtsu: An adaptive and parameterless generalization of Otsu's method for document image binarization", Elsevier transaction of Pattern Recognition, vol. 45, pp: 2419–2431.
  2. B. Gatos, K. Ntirogiannis, I. Pratikakis, 2009, "Document image binarization contest (DIBCO 2009)", International Conference on Document Analysis and Recognitation, pp: 1375–1382.
  3. Pratikakis, I. , Gatos, B. , Ntirogiannis, K. , 2011, "Document image binarization contest (DIBCO 2011)", International Conference on Document Analysis and Recognition, pp: 1506–1510.
  4. M. Sezgin, B. Sankur, 2004, "Survey over image thresholding techniques and quantitative performance evaluation", Journal of Electronic Imaging, vol. 13, pp: 146–168.
  5. R. Farrahi Moghaddam, M. Cheriet, 2010, "A multi-scale framework for adaptive binarization of degraded document images", Elsevier transaction of Pattern Recognition, vol. 43, pp: 2186–2198.
  6. B. Gatos, I. Pratikakis, S. J. Perantonis, 2006, "Adaptive degraded document image binarization", Elsevier transaction of Pattern Recognition, vol. 39, pp: 317–327.
  7. B. Gatos, K. Ntirogiannis, I. Pratikakis, 2010, "Document image binarization contest", International Journal on Document Analysis and Recognition, pp: 1–10.
  8. J. Fabrizio, B. Marcotegui, M. Cord, 2009, "Text segmentation in natural scenes using toggle-mapping", IEEE International Conference on Image Processing, pp: 2373–2376.
  9. B. Gatos, K. Ntirogiannis, I. Pratikakis, 2009, "Document image binarization contest", International Conference on Document Analysis and Recognition, pp: 1375–1382.
  10. R. Hedjam, R. Farrahi Moghaddam, M. Cheriet, 2011, "A spatially adaptive statistical method for the binarization of historical manuscripts and degraded document images", Elsevier transaction of Pattern Recognition, vol. 44, pp: 2184–2196.
  11. B. Su, S. Lu, C. L. Tan, 2010, "A self-training learning document binarization frame work", International Conference on Pattern Recognition, pg no: 3187–3190.
Index Terms

Computer Science
Information Sciences

Keywords

Document digitization Laplacian of image intensity Canny edge Gaussian filter Markovian Random Field.