CFP last date
20 February 2025
Reseach Article

Design and Implementation of RNS Reverse Converter using Parallel Prefix Adders

by M.kuttimani Rajalingam, A.muthumanicckam, R.sornalatha
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 117 - Number 6
Year of Publication: 2015
Authors: M.kuttimani Rajalingam, A.muthumanicckam, R.sornalatha
10.5120/20558-2945

M.kuttimani Rajalingam, A.muthumanicckam, R.sornalatha . Design and Implementation of RNS Reverse Converter using Parallel Prefix Adders. International Journal of Computer Applications. 117, 6 ( May 2015), 16-20. DOI=10.5120/20558-2945

@article{ 10.5120/20558-2945,
author = { M.kuttimani Rajalingam, A.muthumanicckam, R.sornalatha },
title = { Design and Implementation of RNS Reverse Converter using Parallel Prefix Adders },
journal = { International Journal of Computer Applications },
issue_date = { May 2015 },
volume = { 117 },
number = { 6 },
month = { May },
year = { 2015 },
issn = { 0975-8887 },
pages = { 16-20 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume117/number6/20558-2945/ },
doi = { 10.5120/20558-2945 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:58:36.509884+05:30
%A M.kuttimani Rajalingam
%A A.muthumanicckam
%A R.sornalatha
%T Design and Implementation of RNS Reverse Converter using Parallel Prefix Adders
%J International Journal of Computer Applications
%@ 0975-8887
%V 117
%N 6
%P 16-20
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The implementation of residue number system reverse converters based on well-known regular and modular parallel prefix adders is analyzed. The VLSI implementation results show a significant delay reduction and area × time2 improvements, all this at the cost of higher power consumption, which is the main reason preventing the use of parallel-prefix adders to achieve high-speed reverse converters in recent systems. Hence, to solve the high power consumption problem, novel specific hybrid parallel-prefix based adder components that provide better trade-off between delay and power consumption are herein presented to design reverse converters. We propose Parallel distributed arithmetic convolution technique in Reverse Converter to increase the system performance

References
  1. A. Omondi and B. Premkumar, Residue Number Systems: Theory and Implementations. London, U. K. : Imperial College Press, 2007.
  2. B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, 2nd ed. , New York, NY, USA: Oxford Univ. Press, 2010.
  3. J. Chen and J. Hu, "Energy-efficient digital signal processing via voltageover scaling-based residue number system," IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , vol. 21, no. 7, pp. 1322–1332, Jul. 2013.
  4. C. H. Vun, A. B. Premkumar, and W. Zhang, "A new RNS based DA approach for inner product computation," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 8, pp. 2139–2152, Aug. 2013.
  5. S. Antão and L. Sousa, "The CRNS framework and its application to programmable and reconfigurable cryptography," ACM Trans. Archit. Code Optim. , vol. 9, no. 4, p. 33, Jan. 2013.
  6. A. S. Molahosseini, S. Sorouri, and A. A. E. Zarandi, "Research challenges in next-generation residue number system architectures," in Proc. IEEE Int. Conf. Comput. Sci. Educ. , Jul. 2012, pp. 1658–1661.
  7. K. Navi, A. S. Molahosseini, and M. Esmaeildoust, "How to teach residue number system to computer scientists and engineers," IEEE Trans. Educ. , vol. 54, no. 1, pp. 156–163, Feb. 2011.
  8. Y. Wang, X. Song, M. Aboulhamid, and H. Shen, "Adder based residue to binary numbers converters for (2n ? 1, 2n, 2n + 1)," IEEE Trans. Signal Process. , vol. 50, no. 7, pp. 1772–1779, Jul. 2002.
  9. A. S. Molahosseini and K. Navi, "A reverse converter for the enhanced moduli set {2n ? 1, 2n + 1, 22n, 22n+1? 1} using CRT and MRC," in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, Jul. 2010, pp. 456–457.
  10. L. Sousa and S. Antao, "MRC-based RNS reverse converters for the four-moduli+ ?sets {2n + 1, 2n ? 1, 2n, 22n+1 ? 1} and {2n+ 1, 2n ? ,22n, 22n 1 1}," IEEE Trans. Circuits Syst. II, vol. 59, no. 4, pp. 244–248, Apr. 2012.
  11. L. Sousa and S. Antão, "On the design of RNS reverse converters for the four-moduli set {2 n+1, 2n?1, 2n, 2n+1+1}," IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , vol. 21, no. 10, pp. 1945–1949, Oct. 2013.
  12. M. H. Sheu, S. H. Lin, C. Chen, and S. W. Yang, "An efficient VLSI design for a residue to binary converter for general balance moduli (2 n ? 3, 2n + 1, 2n ? 1, 2n + 3)," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 51, no. 3, pp. 152–155, Mar. 2004.
  13. R. P. Brent and H. T. Kung, "A regular layout for parallel adders," IEEE Trans. Comput. , vol. 31, no. 3, pp. 260–264, Mar. 1982.
  14. M. H. Sheu, S. H. Lin, C. Chen, and S. W. Yang, "An efficient VLSI design for a residue to binary converter for general balance moduli (2 n ? 3, 2n + 1, 2n ? 1, 2n + 3)," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 51, no. 3, pp. 152–155, Mar. 2004
  15. B. Cao, C. H. Chang, and T. Srikanthan, "An efficient reverse converter for the 4-moduli set {2n ? 1, 2n, 2n + 1, 22n + 1} based on the new Chinese remainder theorem," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. , vol. 50, no. 10, pp. 1296–1303, Oct. 2003.
  16. A. S. Molahosseini, K. Navi, C. Dadkhah, O. Kavehei, and S. Timarchi,"Efficient reverse+ converter? designs? for the+new 4-moduli+sets {2n ? 1 ,2 n, 2n + 1, 22n 1 1} and {2n 1, 2n 1, 22n, 22n 1} based on new CRTs," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 4 , pp. 823–835, Apr. 2010.
  17. J. Sklansky, "Conditional sum addition logic," IRE Trans. Electron. Comput. , vol. 9, no. 6, pp. 226–231, Jun. 1960.
  18. P. M. Kogge and H. S. Stone, "A parallel algorithm for the efficient solution of a general class of recurrence equations," IEEE Trans. Comput. , vol. 22, no. 8, pp. 783–791, Aug. 1973.
  19. R. Zimmermann, "Binary adder architectures for cell-based VLSI and their synthesis," Ph. D. dissertation, Integr. Syst. Labor. , Dept. Inf. Technol. Electr. Eng. , Swiss Federal Inst. Technol. , Zurich, Switzerland, 1997.
  20. S. J. Piestrak, "A high speed realization of a residue to binary converter," IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. , vol. 42 , no. 10, pp. 661–663, Oct. 1995.
  21. B. Ramkumar and H. M. Kittur, "Low power and area efficient carry select adder," IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , vol. 20 , no. 2, pp. 371–375, Feb. 2012.
  22. R. Zimmermann, "Efficient VLSI implementation of modulo (2n±1) addition and multiplication," in Proc. 14th IEEE Int. Symp. Comput. Arithmetic, Apr. 1999, pp. 158–167.
  23. R. A. Patel, M. Benaissa, and S. Boussakta, "Fast parallel-prefix architectures for modulo 2n?1 addition with a single representation of zero," IEEE Trans. Comput. , vol. 56, no. 11, pp. 1484–1492, Nov. 2007.
  24. H. Kunz and R. Zimmermann, "High-performance adder circuit generators in parameterized structural VHDL," Integr. Syst. Lab. , ETH Zürich Univ. , Zürich, Switzerland, Tech. Rep
Index Terms

Computer Science
Information Sciences

Keywords

Digital arithmetic parallel-prefix adder (PPX) residue number system (RNS) parallel distributed arithmetic convolution architecture reverse converter.