International Journal of Computer Applications |
Foundation of Computer Science (FCS), NY, USA |
Volume 117 - Number 2 |
Year of Publication: 2015 |
Authors: Mehajabi Sayeeda, Rachana Kamble |
10.5120/20526-2863 |
Mehajabi Sayeeda, Rachana Kamble . An Enhancement of Clustering Technique using Support Vector Machine Classifier. International Journal of Computer Applications. 117, 2 ( May 2015), 17-22. DOI=10.5120/20526-2863
Web surfing is very essential task of daily life for any professional person they search information regarding their field. But to get exact required information from ocean internet of data have become complex task. To manage files and information properly document clustering is a good approach. Clustering method divides text information into subgroup on basis of content based similarity. Document clustering reduces searching effort and fulfils human interest information looking for. It groups similar files together to minimize the search time and complexity. This paper gives new clustering method based on hybrid XNOR function to find degree of similarities within any two documents. Resultant similarity used for document clustering by applying SVM classifier for learning network. This paper introduces new method for document clustering by use of similarity matrix calculation and this matrix is passed for training SVM network for upcoming document classification. The results show the effectiveness of proposed work. In this paper, we describe the formatting guidelines for IJCA Journal Submission.