CFP last date
20 December 2024
Reseach Article

Particle Swarm Optimization Algorithm for Integer Factorization Problem (IFP)

by Bhargab Choudhury, Sangita Neog
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 117 - Number 13
Year of Publication: 2015
Authors: Bhargab Choudhury, Sangita Neog
10.5120/20613-3276

Bhargab Choudhury, Sangita Neog . Particle Swarm Optimization Algorithm for Integer Factorization Problem (IFP). International Journal of Computer Applications. 117, 13 ( May 2015), 14-17. DOI=10.5120/20613-3276

@article{ 10.5120/20613-3276,
author = { Bhargab Choudhury, Sangita Neog },
title = { Particle Swarm Optimization Algorithm for Integer Factorization Problem (IFP) },
journal = { International Journal of Computer Applications },
issue_date = { May 2015 },
volume = { 117 },
number = { 13 },
month = { May },
year = { 2015 },
issn = { 0975-8887 },
pages = { 14-17 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume117/number13/20613-3276/ },
doi = { 10.5120/20613-3276 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:59:17.541958+05:30
%A Bhargab Choudhury
%A Sangita Neog
%T Particle Swarm Optimization Algorithm for Integer Factorization Problem (IFP)
%J International Journal of Computer Applications
%@ 0975-8887
%V 117
%N 13
%P 14-17
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents particle swarm optimization (PSO) method to find the prime factors of a composite number. Integer factorization is a well known NP hard problem and security of many cryptosystem is based on difficulty of integer factorization. A particle swarm optimization algorithm for integer factorization has been devised and tested on different 100 numbers. It has been found that the PSO method performs with little variability over swarm size.

References
  1. Abraham, S. , Sanyal, S. , and Sanglikar, M. 2010. Particle Swarm Optimization Based Diophantine Equation Solver, International Journal of Bio-Inspired Computation 2(2), 100-114
  2. Arasomwan, M. A. and Adewumi, O. A. 2014. An Investigation into the Performance of Particle Swarm Optimization with Various Chaotic Maps, 2014. Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2014, Article ID 178959, 17 pages.
  3. Bansal, J. C. , Singh, P. K. , Saraswat, M. , Verma, A. , Jadon, S. S. , & Abraham, A. (2011, October). Inertia weight strategies in particle swarm optimization. In Nature and Biologically Inspired Computing (NaBIC), 2011 Third World Congress on (pp. 633-640). IEEE.
  4. Das, S. , Abraham, A. , and Konar, A. 2008. Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspectives. In Advances of Computational Intelligence in Industrial Systems (pp. 1-38). Springer Berlin Heidelberg.
  5. Feng, Y. , Teng, G. F. , Wang, A. X. , & Yao, Y. M. (2007, September). Chaotic inertia weight in particle swarm optimization. In Innovative Computing, Information and Control, 2007. ICICIC'07. Second International Conference on (pp. 475-475). IEEE.
  6. Huang, T. , and Mohan, A. S. 2005. A hybrid boundary condition for robust particle swarm optimization. Antennas and Wireless Propagation Letters, IEEE, 4, 112-117.
  7. Kennedy, J. 2010. Particle swarm optimization. In Encyclopedia of Machine Learning (pp. 760-766). Springer US.
  8. Medina, A. J. R. , Pulido, G. T. , and Ramírez-Torres, J. G. 2009. A Comparative Study of Neighborhood Topologies for Particle Swarm Optimizers. In IJCCI (pp. 152-159).
  9. Rivest, R. L. , Shamir, A. , & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2), 120-126.
  10. Shi, Y. , & Eberhart, R. C. (1999). Empirical study of particle swarm optimization. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on (Vol. 3). IEEE.
  11. Sun, J. , Lai, C. H. , & Wu, X. J. (2011). Particle Swarm Optimisation: Classical and Quantum Perspectives. CRC Press.
  12. Vignesh, R. S. , Sudharssun, S. , & Kumar, K. J. (2009, December). Limitations of quantum & the versatility of classical cryptography: a comparative study. In Environmental and Computer Science, 2009. ICECS'09. Second International Conference on (pp. 333-337). IEEE.
  13. Yan, S. Y. 2002. Number theory for computing. Springer Science & Business Media.
Index Terms

Computer Science
Information Sciences

Keywords

Legendre Congruence PSO