International Journal of Computer Applications |
Foundation of Computer Science (FCS), NY, USA |
Volume 116 - Number 23 |
Year of Publication: 2015 |
Authors: Amirhossein Adami, Mahdi Mortazavi, Mehran Nosratollahi |
10.5120/20496-2109 |
Amirhossein Adami, Mahdi Mortazavi, Mehran Nosratollahi . Multidisciplinary Design Optimization of a Deorbit Maneuver Considering Propulsion, TPS, and Trajectory. International Journal of Computer Applications. 116, 23 ( April 2015), 1-6. DOI=10.5120/20496-2109
Unguided reentry capsules are usually involved in ballistic entry. The final states (such as altitude and velocity of parachute activity) depend on initials parameters. Reentry trajectory parameters differently affect the thermal protection system (TPS), required deorbit propellant, and structural load. The purpose of this paper is to optimal design of deorbit parameters to minimize the thermal protection system mass and deorbit propellant mass using multidisciplinary design optimization technique. Genetic Algorithm (GA) is used to simultaneously optimize TPS discipline, propulsion discipline and trajectory in present of the all trajectory and configuration constraints. To do this, every discipline is mathematically modeled. A suitable framework of Multidisciplinary design optimization (MDO) is developed. Then, the reentry mission is optimized according to the each discipline. The results show that simultaneous optimization is more efficient in comparison with single discipline optimization such as TPS optimization or deorbit propulsion system (propulsion and propellant) optimization.