CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

Inverse Flexible Weibull Extension Distribution

by A. El-gohary, A. H. El-bassiouny, M. El-morshedy
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 115 - Number 2
Year of Publication: 2015
Authors: A. El-gohary, A. H. El-bassiouny, M. El-morshedy
10.5120/20127-2211

A. El-gohary, A. H. El-bassiouny, M. El-morshedy . Inverse Flexible Weibull Extension Distribution. International Journal of Computer Applications. 115, 2 ( April 2015), 46-51. DOI=10.5120/20127-2211

@article{ 10.5120/20127-2211,
author = { A. El-gohary, A. H. El-bassiouny, M. El-morshedy },
title = { Inverse Flexible Weibull Extension Distribution },
journal = { International Journal of Computer Applications },
issue_date = { April 2015 },
volume = { 115 },
number = { 2 },
month = { April },
year = { 2015 },
issn = { 0975-8887 },
pages = { 46-51 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume115/number2/20127-2211/ },
doi = { 10.5120/20127-2211 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:53:41.848810+05:30
%A A. El-gohary
%A A. H. El-bassiouny
%A M. El-morshedy
%T Inverse Flexible Weibull Extension Distribution
%J International Journal of Computer Applications
%@ 0975-8887
%V 115
%N 2
%P 46-51
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, a new two parameters model is introduced. We called it the inverse flexible Weibull extension (IFW) distribution. Several properties of this distribution have been discussed. The maximum likelihood estimators of the parameters are derived. Two real data sets are analyzed using the new model, which show that the new model fits the data better than some other very well known models.

References
  1. Weibull, W. A. 1951. Statistical distribution function of wide applicability. Journal of Applied Mechanics, 18, 293-6.
  2. Mudholkar, G. S. , Srivastava, D. K. 1993. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Transactions on Reliability, 42, 299-302.
  3. Drapella, A. 1993. Complementary Weibull distribution unknown or just forgotten. Qual Reliab Eng Int, 9:383-385.
  4. Mudholkar, G. S. , Kollia, G. D. 1994. Generalized Weibull family: a structural analysis. Commun Stat Ser A, 23:1149-1171.
  5. Jiang, R. , Zuo, M. J. and Li, H. X. 1999. Weibull and Weibull inverse mixture models allowing negative weights". Reliab Eng Syst Saf, 66:227-234.
  6. Xie, M. , Tang, Y. and Goh, T. N. 2002. A modified Weibull extension with bathtub-shaped failure rate function". Reliability Engineering and System Safety, 76, 279--285.
  7. Sarhan, A. M. , Apaloo. J. 2013. Exponentiated modified Weibull extension distribution. Reliability Engineering and System Safety, 112, 137-144.
  8. Bebbington, M. , Lai, C. D. and Zitikis, R. 2007. A flexible Weibull extension. Reliability Engineering and System Safety, 92, 719-726.
  9. El-Gohary, A. , EL-Bassiouny. A. H. and El-Morshedy, M. Exponentiated Flexible Weibull Extension Distribution. Submitted. Jokull ( to appear).
  10. Wongo, D. R. 1993. Maximum likelihood methods for fitting the Burr Type XII distribution to multiply (progressively) censored life test data", Metrika 40, 203-210.
  11. Garg, M. L. , Rao, B. R. and Redmond, K. 1970. Maximum likelihood estimation of the parameters of the Gompertz survival function. J. Roy. Stat. Soc. Ser. Appl. Stat. 19, 152-159.
  12. Aarset, M. V. 1987. How to identify bathtub hazard rate. IEEE Transactions on Reliability, 36, 106-108.
  13. LEE, E. T. , WANG, J. W. 2003 . Statistical Methods for Survival Data Analysis . Wiley, New York, 3rd edition.
Index Terms

Computer Science
Information Sciences

Keywords

Inverse Weibull distribution Hazard function Moments Maximum likelihood estimators Median and mode.