CFP last date
20 January 2025
Reseach Article

Exact Traveling Wave Solutions for Fitzhugh-Nagumo (FN) Equation and Modified Liouville Equation

by Mahmoud A.e. Abdelrahman, Mostafa M.a. Khater
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 114 - Number 3
Year of Publication: 2015
Authors: Mahmoud A.e. Abdelrahman, Mostafa M.a. Khater
10.5120/19955-1791

Mahmoud A.e. Abdelrahman, Mostafa M.a. Khater . Exact Traveling Wave Solutions for Fitzhugh-Nagumo (FN) Equation and Modified Liouville Equation. International Journal of Computer Applications. 114, 3 ( March 2015), 1-7. DOI=10.5120/19955-1791

@article{ 10.5120/19955-1791,
author = { Mahmoud A.e. Abdelrahman, Mostafa M.a. Khater },
title = { Exact Traveling Wave Solutions for Fitzhugh-Nagumo (FN) Equation and Modified Liouville Equation },
journal = { International Journal of Computer Applications },
issue_date = { March 2015 },
volume = { 114 },
number = { 3 },
month = { March },
year = { 2015 },
issn = { 0975-8887 },
pages = { 1-7 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume114/number3/19955-1791/ },
doi = { 10.5120/19955-1791 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:51:41.017802+05:30
%A Mahmoud A.e. Abdelrahman
%A Mostafa M.a. Khater
%T Exact Traveling Wave Solutions for Fitzhugh-Nagumo (FN) Equation and Modified Liouville Equation
%J International Journal of Computer Applications
%@ 0975-8887
%V 114
%N 3
%P 1-7
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we employ the exp(-?(x))-expansion method to find the exact traveling wave solutions involving parameters of nonlinear evolution equations Fitzhugh-Nagumo (FN) equation and Modified Liouville equation. When these parameters are taken to be special values, the solitary wave solutions are derived from the exact traveling wave solutions. It is shown that the proposed method provides a more powerful mathematical tool for constructing exact traveling wave solutions for many other nonlinear evolution equations.

References
  1. W. Malfliet, Solitary wave solutions of nonlinear wave equation, Am. J. Phys. , 60 (1992) 650-654.
  2. W. Malfliet, W. Hereman, The tanh method: Exact solutions of nonlinear evolution and wave equations, Phys. Scr. , 54 (1996) 563-568.
  3. A. M. Wazwaz, The tanh method for travelling wave solutions of nonlinear equations, Appl. Math. Comput. , 154 (2004) 714-723.
  4. S. A. EL-Wakil, M. A. Abdou, New exact travelling wave solutions using modified extented tanh-function method, Chaos Solitons Fractals, 31 (2007) 840-852.
  5. E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A 277 (2000) 212-218.
  6. Mahmoud A. E. Abdelrahman, Emad H. M. Zahran Mostafa M. A. Khater, Exact Traveling Wave Solutions for Modified Liouville Equation Arising in Mathematical Physics and Biology, (International Journal of Computer Applications (0975 8887) Volume 112 - No. 12, February 2015).
  7. A. M. Wazwaz, Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE. method, Comput. Math. Appl. , 50 (2005) 1685-1696.
  8. A. M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput. Modelling, 40 (2004) 499- 508.
  9. C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A 224 (1996) 77-84.
  10. E. Fan, H. Zhang, A note on the homogeneous balance method, Phys. Lett. A 246 (1998) 403-406.
  11. M. L. Wang, Exct solutions for a compound KdV-Burgers equation, Phys. Lett. A 213 (1996) 279-287.
  12. Emad H. M. Zahran and Mostafa M. A. Khater, The modified simple equation method and its applications for solving some nonlinear evolutions equations in mathematical physics, (Jokull journal- Vol. 64. Issue 5 - May 2014).
  13. Y. J. Ren, H. Q. Zhang, A generalized F-expansion method to find abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation, Chaos Solitons Fractals, 27 (2006) 959-979.
  14. J. L. Zhang, M. L. Wang, Y. M. Wang, Z. D. Fang, The improved F-expansion method and its applications, Phys. Lett. A 350 (2006) 103-109.
  15. J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals 30 (2006) 700-708.
  16. H. Aminikhad, H. Moosaei, M. Hajipour, Exact solutions for nonlinear partial differential equations via Exp-function method, Numer. Methods Partial Differ. Equations, 26 (2009) 1427-1433.
  17. Z. Y. Zhang, New exact traveling wave solutions for the nonlinear Klein-Gordon equation, Turk. J. Phys. , 32 (2008) 235- 240.
  18. M. L. Wang, J. L. Zhang, X. Z. Li, The (G 0 G )- expansion method and travelling wave solutions of nonlinear evolutions equations in mathematical physics, Phys. Lett. A 372 (2008) 417-423.
  19. S. Zhang, J. L. Tong, W. Wang, A generalized (G 0 G )- expansion method for the mKdv equation with variable coefficients, Phys. Lett. A 372 (2008) 2254-2257.
  20. E. M. E. Zayed and K. A. Gepreel, The (G 0 G )- expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics, J. Math. Phys. , 50 (2009) 013502-013513.
  21. E. H. M. Zahran and mostafa M. A. khater, Exact solutions to some nonlinear evolution equations by the (G 0 G ) -expansion method equations in mathematical physics, Jokull Journal, Vol. 64, No. 5; May 2014.
  22. C. Q. Dai , J. F. Zhang, Jacobian elliptic function method for nonlinear differential difference equations, Chaos Solutions Fractals, 27 (2006) 1042-1049.
  23. E. Fan , J . Zhang, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A 305 (2002) 383-392.
  24. S. Liu, Z. Fu, S. Liu, Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A 289 (2001) 69-74.
  25. Emad H. M. Zahran and Mostafa M. A. Khater, Exact Traveling Wave Solutions for the System of Shallow Water Wave Equations and Modified Liouville Equation Using Extended Jacobian Elliptic Function Expansion Method, American Journal of Computational Mathematics (AJCM) Vol. 4 No. 5 (2014).
  26. Nizhum Rahman, Md. Nur Alam, Harun-Or-Roshid, Selina Akter and M. Ali Akbar, Application of exp(??'( ))expansion method to find the exact solutions of Shorma-Tasso-Olver Equation, African Journal of Mathematics and Computer Science Research Vol. 7( 1), pp. 1-6, February, 2014.
  27. Rafiqul Islam, Md. Nur Alam, A. K. M. Kazi Sazzad Hossain, Harun-Or-Roshid and M. Ali Akbar, Traveling Wave Solutions of Nonlinear Evolution Equations via Exp(??'( ))- Expansion Method, Global Journal of Science Frontier Research Mathematics and Decision Sciences. Volume 13 Issue 11 Version 1. 0 Year 2013.
  28. Mahmoud A. E. Abdelrahman, Emad H. M. Zahran Mostafa M. A. Khater, Exact traveling wave solutions for power law and Kerr law non linearity using the exp(?? ( ))-expansion method . ( GJSFR Volume 14-F Issue 4 Version 1. 0).
  29. Polyanin, A. D. and V. F. Zaitsev, 2004. Handbook of Nonlinear Partial Differential Equations, Chapman Hall/CRC, Boca Raton.
  30. Sayed, S. M. and G. M. Gharib, 2007. Canonical reduction of self-dual yang-Mills equations to Fitzhugh-Nagumo equation and exact solutions. Chaos, Solitons and Fractals doi:10. 1016/j. chaos. 2007. 01. 076.
  31. Fizhugh, R. , 1961. J. Biophys, 1: 445.
  32. Nagumo, J. S. , S. Arimoto and S. Yoshizawa, 1962. Proc. IRE. 50, 2061.
  33. Aronson, D. J. and H. F. Weinberger, 1978. Adv. Math. , 30: 33.
  34. Abbasbandy, S. , 2007. Soliton solutions for the Fitzhugh- Nagumo equation with the homotopy analysis method. Appl. Math. Mod. , doi:10. 1016/j. apm. 2007. 09. 019.
Index Terms

Computer Science
Information Sciences

Keywords

The exp(-?(x))-expansion method Fitzhugh-Nagumo (FN) equation Modified Liouville equation Traveling wave solutions Solitary wave solutions Kink-antikink shaped.