CFP last date
20 December 2024
Reseach Article

Weak Set-Labeling Number of Certain Integer Additive Set-Labeled Graphs

by N. K. Sudev, K. A. Germina, K. P. Chithra
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 114 - Number 2
Year of Publication: 2015
Authors: N. K. Sudev, K. A. Germina, K. P. Chithra
10.5120/19947-1772

N. K. Sudev, K. A. Germina, K. P. Chithra . Weak Set-Labeling Number of Certain Integer Additive Set-Labeled Graphs. International Journal of Computer Applications. 114, 2 ( March 2015), 1-6. DOI=10.5120/19947-1772

@article{ 10.5120/19947-1772,
author = { N. K. Sudev, K. A. Germina, K. P. Chithra },
title = { Weak Set-Labeling Number of Certain Integer Additive Set-Labeled Graphs },
journal = { International Journal of Computer Applications },
issue_date = { March 2015 },
volume = { 114 },
number = { 2 },
month = { March },
year = { 2015 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume114/number2/19947-1772/ },
doi = { 10.5120/19947-1772 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:51:36.346320+05:30
%A N. K. Sudev
%A K. A. Germina
%A K. P. Chithra
%T Weak Set-Labeling Number of Certain Integer Additive Set-Labeled Graphs
%J International Journal of Computer Applications
%@ 0975-8887
%V 114
%N 2
%P 1-6
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Let N0 be the set of all non-negative integers, let X N0 and P(X) be the the power set of X. An integer additive set-labeling (IASL) of a graph G is an injective function f : V (G) ! P(N0) such that the induced function f+ : E(G) ! P(N0) is defined by f+(uv) = f(u) + f(v), where f(u) + f(v) is the sum set of f(u) and f(v). An IASL f is said to be an integer additive set-indexer (IASI) of a graph G if the induced edge function f+ is also injective. An integer additive set-labeling f is said to be a weak integer additive set-labeling (WIASL) if jf+(uv)j = max(jf(u)j; jf(v)j) 8 uv 2 E(G). The minimum cardinality of the ground setX required for a given graph G to admit an IASL is called the set-labeling number of the graph. In this paper, the notion of the weak set-labeling number of a graph G is introduced as the minimum cardinality of X so that G admits a WIASL with respect to the ground set X and the weak set-labeling numbers of certain graphs are discussed.

References
  1. J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, 2008.
  2. A. Brandst¨adt, V. B. Le and J. P. Spinrad, Graph Classes: A Survey, SIAM, Philadelphia, 1999.
  3. J. A. Gallian, A Dynamic Survey of Graph Labelling, The Electronic Journal of Combinatorics, DS #16, 2011.
  4. K. A. Germina and T. M. K. Anandavally, Integer Additive Set-Indexers of a Graph: Sum Square Graphs, Journal of Combinatorics, Information and System Sciences, 37(2- 4)(2012), 345-358.
  5. K. A. Germina and N. K. Sudev, On Weakly Uniform Integer Additive Set-Indexers of Graphs, International Mathematical Forum, 8(37)(2013), 1827-1834. DOI:10. 12988/imf. 2013. 310188
  6. F. Harary, Graph Theory, Addison-Wesley Publishing Company Inc. , 1994.
  7. N. K. Sudev and K. A. Germina, On Integer Additive Set- Indexers of Graphs, International Journal of Mathematical Sciences & Engineering Applications, 8(II)(2014), 11-22.
  8. N. K. Sudev and K. A. Germina, A Characterisation of Weak Integer Additive Set-Indexers of Graphs, ISPACS Journal of Fuzzy Set Valued Analysis, 2014(2014), 7 pages, DOI: 10. 5899/2014/jfsva-00189.
  9. N. K. Sudev and K. A. Germina, Weak Integer Additive Set- Indexers of Certain Graph Operations, Global Journal of Mathematical Sciences: Theory & Practical, 6(1)(2014), 25- 36.
  10. N. K. Sudev and K. A. Germina, A Note on Sparing Number of Graphs, Advances and Applications in Discrete Mathematics, 14(1)(2014),50-65.
  11. N. K. Sudev and K. A. Germina, Weak Integer Additive Set- Indexers of Certain Graph Classes, to appear in Journal of Discrete Mathematical Sciences & Cryptography.
  12. N. K. Sudev, K. A. Germina and K. P. Chithra, Weak Integer Additive Set-Labeled Graphs: A Creative Review, to appear in Asian European Journal of Mathematics.
  13. W. D. Wallis, Beginner's Guide to Graph Theory, Birkh¨auser, Boston, 2007.
  14. D. B. West, Introduction to Graph Theory, Pearson Education Inc. , 2001.
  15. Information System on Graph Classes and their Inclusions, http://www. graphclasses. org.
Index Terms

Computer Science
Information Sciences

Keywords

Integer additive set-labeled graphs weak integer additive setlabeled graphs weak set-labeling number of a graph.