We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Weak Set-Labeling Number of Certain Integer Additive Set-Labeled Graphs

by N. K. Sudev, K. A. Germina, K. P. Chithra
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 114 - Number 2
Year of Publication: 2015
Authors: N. K. Sudev, K. A. Germina, K. P. Chithra
10.5120/19947-1772

N. K. Sudev, K. A. Germina, K. P. Chithra . Weak Set-Labeling Number of Certain Integer Additive Set-Labeled Graphs. International Journal of Computer Applications. 114, 2 ( March 2015), 1-6. DOI=10.5120/19947-1772

@article{ 10.5120/19947-1772,
author = { N. K. Sudev, K. A. Germina, K. P. Chithra },
title = { Weak Set-Labeling Number of Certain Integer Additive Set-Labeled Graphs },
journal = { International Journal of Computer Applications },
issue_date = { March 2015 },
volume = { 114 },
number = { 2 },
month = { March },
year = { 2015 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume114/number2/19947-1772/ },
doi = { 10.5120/19947-1772 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:51:36.346320+05:30
%A N. K. Sudev
%A K. A. Germina
%A K. P. Chithra
%T Weak Set-Labeling Number of Certain Integer Additive Set-Labeled Graphs
%J International Journal of Computer Applications
%@ 0975-8887
%V 114
%N 2
%P 1-6
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Let N0 be the set of all non-negative integers, let X N0 and P(X) be the the power set of X. An integer additive set-labeling (IASL) of a graph G is an injective function f : V (G) ! P(N0) such that the induced function f+ : E(G) ! P(N0) is defined by f+(uv) = f(u) + f(v), where f(u) + f(v) is the sum set of f(u) and f(v). An IASL f is said to be an integer additive set-indexer (IASI) of a graph G if the induced edge function f+ is also injective. An integer additive set-labeling f is said to be a weak integer additive set-labeling (WIASL) if jf+(uv)j = max(jf(u)j; jf(v)j) 8 uv 2 E(G). The minimum cardinality of the ground setX required for a given graph G to admit an IASL is called the set-labeling number of the graph. In this paper, the notion of the weak set-labeling number of a graph G is introduced as the minimum cardinality of X so that G admits a WIASL with respect to the ground set X and the weak set-labeling numbers of certain graphs are discussed.

References
  1. J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, 2008.
  2. A. Brandst¨adt, V. B. Le and J. P. Spinrad, Graph Classes: A Survey, SIAM, Philadelphia, 1999.
  3. J. A. Gallian, A Dynamic Survey of Graph Labelling, The Electronic Journal of Combinatorics, DS #16, 2011.
  4. K. A. Germina and T. M. K. Anandavally, Integer Additive Set-Indexers of a Graph: Sum Square Graphs, Journal of Combinatorics, Information and System Sciences, 37(2- 4)(2012), 345-358.
  5. K. A. Germina and N. K. Sudev, On Weakly Uniform Integer Additive Set-Indexers of Graphs, International Mathematical Forum, 8(37)(2013), 1827-1834. DOI:10. 12988/imf. 2013. 310188
  6. F. Harary, Graph Theory, Addison-Wesley Publishing Company Inc. , 1994.
  7. N. K. Sudev and K. A. Germina, On Integer Additive Set- Indexers of Graphs, International Journal of Mathematical Sciences & Engineering Applications, 8(II)(2014), 11-22.
  8. N. K. Sudev and K. A. Germina, A Characterisation of Weak Integer Additive Set-Indexers of Graphs, ISPACS Journal of Fuzzy Set Valued Analysis, 2014(2014), 7 pages, DOI: 10. 5899/2014/jfsva-00189.
  9. N. K. Sudev and K. A. Germina, Weak Integer Additive Set- Indexers of Certain Graph Operations, Global Journal of Mathematical Sciences: Theory & Practical, 6(1)(2014), 25- 36.
  10. N. K. Sudev and K. A. Germina, A Note on Sparing Number of Graphs, Advances and Applications in Discrete Mathematics, 14(1)(2014),50-65.
  11. N. K. Sudev and K. A. Germina, Weak Integer Additive Set- Indexers of Certain Graph Classes, to appear in Journal of Discrete Mathematical Sciences & Cryptography.
  12. N. K. Sudev, K. A. Germina and K. P. Chithra, Weak Integer Additive Set-Labeled Graphs: A Creative Review, to appear in Asian European Journal of Mathematics.
  13. W. D. Wallis, Beginner's Guide to Graph Theory, Birkh¨auser, Boston, 2007.
  14. D. B. West, Introduction to Graph Theory, Pearson Education Inc. , 2001.
  15. Information System on Graph Classes and their Inclusions, http://www. graphclasses. org.
Index Terms

Computer Science
Information Sciences

Keywords

Integer additive set-labeled graphs weak integer additive setlabeled graphs weak set-labeling number of a graph.