We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

On Y-Connected Sets

by B. K. Tyagi, Harsh V. S. Chauhan, Rachna Choudhary
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 113 - Number 16
Year of Publication: 2015
Authors: B. K. Tyagi, Harsh V. S. Chauhan, Rachna Choudhary
10.5120/19907-2011

B. K. Tyagi, Harsh V. S. Chauhan, Rachna Choudhary . On Y-Connected Sets. International Journal of Computer Applications. 113, 16 ( March 2015), 1-3. DOI=10.5120/19907-2011

@article{ 10.5120/19907-2011,
author = { B. K. Tyagi, Harsh V. S. Chauhan, Rachna Choudhary },
title = { On Y-Connected Sets },
journal = { International Journal of Computer Applications },
issue_date = { March 2015 },
volume = { 113 },
number = { 16 },
month = { March },
year = { 2015 },
issn = { 0975-8887 },
pages = { 1-3 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume113/number16/19907-2011/ },
doi = { 10.5120/19907-2011 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:51:04.362754+05:30
%A B. K. Tyagi
%A Harsh V. S. Chauhan
%A Rachna Choudhary
%T On Y-Connected Sets
%J International Journal of Computer Applications
%@ 0975-8887
%V 113
%N 16
%P 1-3
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The definition of -connectedness due to Cs asz ar [3] is modified and its basic properties are studied. The images and preimages of - connected sets under ( ?? 0)- continuous mapping are investigated. Sufficient conditions for a mapping to be ( ?? 0)- continuous are given.

References
  1. A . Csa sza r, Generalized open sets, Acta Math. Hungar. 75 (1997), 65–87.
  2. A . Csa sza r, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), 351–357.
  3. A . Csa sza r, - connected sets, Acta Math. Hungar. 101(2) (2003), 273–279.
  4. A . Csa sza r, Separation Axioms for Generalized topology, Acta Math. Hungar. 104(1-2) (2004), 63–69.
  5. M. R. Hagan, A Note on Connected and Peripherally Continuous Functions , Proc. Amer. Math. Soc. 26 (1970), 219–213.
  6. M. R. Hagan, Condition for Continuity of Certain Open Monotone Functions , Proc. Amer. Math. Soc. 30(1) (1971), 175–178.
  7. J. J. Jones, On Semiconnected Mappings of Topological Spaces, Proc. Amer. Math. Soc. 19 (1968), 174–175.
  8. J. K. kohli, Sufficient Condition for Continuity of Certain Connected Function, Glasnik matematicki 15 (1980), 377– 381.
  9. P. E. Long, Concerning Semiconnected Maps, Proc. Amer. Math. Soc. 21 (1969), 117–118.
  10. G. E. Xun and G. E. Ying, - separations in generalized topological spaces, Appl. Math. J. Chines Univ. , 25(2) (2010), 243–252.
Index Terms

Computer Science
Information Sciences

Keywords

- connectedness ( ?? 0)- continuous mapping ( ?? 0)- semiconnected ( ?? 0)- weakly semiconnected ( ?? 0)- connected - strongly semi-locally connected.