We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Software Application for Data Driven Prediction Models for Intermittent Streamflow for Narmada River Basin

by Ila Dashora, S. K. Singal, D. K. Srivastav
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 113 - Number 10
Year of Publication: 2015
Authors: Ila Dashora, S. K. Singal, D. K. Srivastav
10.5120/19860-1817

Ila Dashora, S. K. Singal, D. K. Srivastav . Software Application for Data Driven Prediction Models for Intermittent Streamflow for Narmada River Basin. International Journal of Computer Applications. 113, 10 ( March 2015), 9-17. DOI=10.5120/19860-1817

@article{ 10.5120/19860-1817,
author = { Ila Dashora, S. K. Singal, D. K. Srivastav },
title = { Software Application for Data Driven Prediction Models for Intermittent Streamflow for Narmada River Basin },
journal = { International Journal of Computer Applications },
issue_date = { March 2015 },
volume = { 113 },
number = { 10 },
month = { March },
year = { 2015 },
issn = { 0975-8887 },
pages = { 9-17 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume113/number10/19860-1817/ },
doi = { 10.5120/19860-1817 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:50:34.205413+05:30
%A Ila Dashora
%A S. K. Singal
%A D. K. Srivastav
%T Software Application for Data Driven Prediction Models for Intermittent Streamflow for Narmada River Basin
%J International Journal of Computer Applications
%@ 0975-8887
%V 113
%N 10
%P 9-17
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Synthetic generation of streamflow data facilitates the planning and operation of water resource projects. Significance of streamflow forecasting for intermittent river increases many fold in order to use available water yearlong for multipurpose water resources project. In the present study, monthly streamflow data has been used for intermittent river Goi in Narmada river basin. The performance of stochastic stream flow generation models– seasonal autoregressive integrated moving average (SARIMA) and Thomas-Fiering model are compared with Artificial Neural Network (ANN) approach. The performance of these models is evaluated on the basis of root mean square error (RMSE) and coefficient of determination (R2). The study reveals that SARIMA performs better than Thomas-Fiering and ANN models. Thomas Fiering model is least reliable model among other two models. However Thomas-Fiering model performed well in case of high flow prediction whereas SARIMA and ANN performed well for lower and moderate flow. The predicted data can be used for the small hydropower projects development.

References
  1. Abrahart, R. J. , & See, L. 2000. Comparing neural network (NN) and auto regressive moving average (ARMA) techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol. Process. 14, 2157–2172.
  2. Ahmed, J. A. & Sarma, A. K. , 2007. Artificial neural network model for synthetic stream-flow generation. Water Resour Manage. , 21,1015–1029.
  3. Akaike, H. , (1978. A Bayesian analysis of the minimum AIC procedure. Ann. Inst. Stat. Math, 30A, 9–14.
  4. Arselan, & Cheleng A. , 2012. Stream flow Simulation and Synthetic Flow Calculation by Modified Thomas Fiering Model. Al-Rafadain Engineering Journal, 20(4), 118.
  5. Box, G. E. P. & Jenkins, G. M. , 1976. Time Series Analysis Forecasting and Control. Holden-Day, San Francisco, pp. 32-100.
  6. Box, G. E. P. & Ljung, G. M. 1978. On a measure of lack of fit in time series models. Biometrika, 65(2), 297–303.
  7. Brockwell, P. J. & Davis, R. A. , 1991. Time Series: Theory and Methods. 2nd Edition, Springer Series in Statistics, Springer, New York.
  8. Burian, J. S. , Durrans, S. R. , Nix, S. J. , & Pitt, R. E. , 2001. Training artificial neural networks to perform rainfall disaggregation. J. Hydrol. Engg. 6(1), 43–51
  9. Das, G. , 2000. Hydrology and soil conservation engineering. Prentice Hall of India, New Delhi
  10. Haan, C. T. , 1977. Statistics Methods in Hydrology. Iowa State Press, Iowa, p. 378.
  11. Huang, W. R. , Xu, B. , & Hilton, A. 2004. Forecasting Flows in Apalachicola River Using Neural Networks. Hydrological Processes. 18, 2545-2564.
  12. India WIRS, 2014. Water Resources Information System of India website. http://india-wris. nrsc. gov. in/wrpinfo/index. php?title=Narmada
  13. Kale, V. S. , Ely, L. L. , Enzel, Y. & Baker, V. R. , 1994. Geomorphic and hydrologic aspects of monsoon floods on the Narmada and Tapi rivers in central India. Geomorphology, 10,157-168.
  14. Karul, C. , Soyupak, S. , Cilesiz, A. F. , Akbay, N. , & Germen, E. , 2000. Case studies on the use of neural networks in eutrophication modeling. Ecological Modelling, 134, 145–152.
  15. Karunanithi, N. , Grenney,W. J. , Whitley, D. , & Bovee, K. , 1994. Neural networks for river flow prediction. J. Comput. Civ. Engg. , 8(2),201–220.
  16. Machiwel, D. , & Jha, M. K. , 2012. Hydrologic Time Series Analysis, Capital Publishing Company. pp-91. DOI 10. 1007/978-94-007-1861-6_5.
  17. Martins, O. Y. , Ahaneku, I. E. , & Mohanned S. A. , 2011. Parametric Linear Stochastic Modelling of Benue River Flow Process. Open Journal of Marine Science, 3, 73-81
  18. NIH website 2014. http://www. nih. ernet. in/rbis/basin%20maps/narmada_about. htm.
  19. Pankratz, A. 1983. Forecasting with Univariate Box-Jenkins Models: Concepts and Cases. Wiley, New York.
  20. Schlittgen, J. and Streitberg, B. H. J. 2001. Zeitreihenanalyse. Oldenbourg, Munich, Germany.
  21. Thomas, H. A. & Fiering, M. B. , 1962. Mathematical synthesis of stream-flow sequences for the analysis of river basin by simulation. In A. Maas et al. Design of Water Resource Systems, chapter 12: Harvard University Press.
  22. Velicer, W. F. , & Harrop, J. , 1983. The reliability and accuracy of time series model identification. Eval. Rev. ,7, 551–560.
  23. Vogel, R. M. , and N. M. Fennessey 1994, Flow-Duration Curves . 2. New Interpretation and Confidence-Intervals, J. Water Resour. Plan. Manage. -ASCE, 120, 485-504.
  24. Wei,W. W. S. , 1990. Time Series Analysis. Addison-Wesley Publishing Company, Inc, New York, p. 478.
  25. Yurekli, K. , Kurunc, A. , & Ozturk, F. , 2005. Application of Linear Stochastic Models to Monthly Flow Data of Kelkit Stream, Ecological Modelling, 183, 67-75.
Index Terms

Computer Science
Information Sciences

Keywords

Seasonal Autoregressive Integrated Moving Average Neural Network Stochastic Models Prediction Small Hydropower Power Potential