CFP last date
20 December 2024
Reseach Article

ACO Modeling: Organizational Modeling of an Ant Multi-Colonies Optimization Approach

by Elie Tagne Fute, Emmanuel Tonye
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 113 - Number 10
Year of Publication: 2015
Authors: Elie Tagne Fute, Emmanuel Tonye
10.5120/19859-1824

Elie Tagne Fute, Emmanuel Tonye . ACO Modeling: Organizational Modeling of an Ant Multi-Colonies Optimization Approach. International Journal of Computer Applications. 113, 10 ( March 2015), 1-8. DOI=10.5120/19859-1824

@article{ 10.5120/19859-1824,
author = { Elie Tagne Fute, Emmanuel Tonye },
title = { ACO Modeling: Organizational Modeling of an Ant Multi-Colonies Optimization Approach },
journal = { International Journal of Computer Applications },
issue_date = { March 2015 },
volume = { 113 },
number = { 10 },
month = { March },
year = { 2015 },
issn = { 0975-8887 },
pages = { 1-8 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume113/number10/19859-1824/ },
doi = { 10.5120/19859-1824 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:50:33.519808+05:30
%A Elie Tagne Fute
%A Emmanuel Tonye
%T ACO Modeling: Organizational Modeling of an Ant Multi-Colonies Optimization Approach
%J International Journal of Computer Applications
%@ 0975-8887
%V 113
%N 10
%P 1-8
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper describes the organizational modeling of the Ant Colony Optimization (ACO). It presents a modeling approach of the ACO based on Holonic Multi-Agent paradigm named HMAS (Holonic Multi-Agent Systems). The approach of modeling used is organizational and it uses four basic concepts: Capacity, Role, Interaction and Organization (CRIO). The Traditional modeling techniques fail to capture interactions between loosely coupled aspects of a complex system. However, the organizational model of the ACO has highlighted the different roles that can occur in such optimization device. The solving approach highlights two fundamental concepts from behavioral intensification and diversification. Since, it is difficult to distinguish an intensification from a diversification behavior, though these two trends are identifiable in the organizational model of the proposed ACO, a single role can combine the roles Intensify and Diversify. So, a Manager role is identified and is responsible for the coordination of research by the colonies, and the management of the pheromone memory.

References
  1. C. Blum and A. Roli. Metaheuristics in combinatorial optimization : Overview and conceptual comparison. In ACM Computing Surveys, 35(3), pages 268–308, 2003.
  2. B. Bullnheimer, R. F. Hartl, and C. Strauss. An improved ant system algorithm for the Vehicle Routing Problem. In Annals of Operations Research, pages 319–328, 1999.
  3. B. Bullnheimer, R. F. Hartl, and C. Strauss. Applying the ant systems to the vehicle routing problem. In Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, Kluwer, 1999.
  4. Y. Chevaleyre. Le probleme multi-agents de la patrouille. In Annales du LAMSADE, Universite Paris-Dauphine, France, pages 121–144, 2006.
  5. A. Colorni, M. Dorigo, and V. Maniezzo. Distributed Optimization by ant colonies. In First ECAL, pages 134–142, 1991.
  6. D. Costa and A. Hertz. Ants can colour graphs. In JORS,48(3), pages 295–305, 1997.
  7. Meignan David. Une approche organisationnelle et multiagent pour la modelisation et l'implantation de metaheuristiques: Application aux problemes d'optimisation de transports. PhD thesis, Universite de Technologie de Belfort- Montbeliard, 2008.
  8. M. Dorigo and C. Blum. Ant colony optimization theory: A survey. In Theoretical Computer Science 344, Elsevier, pages 243–278, 2005.
  9. M. Dorigo and L. M. Gambardella. Ant colony system: a cooperative learning approach to the travelling salesman problem. In TEC, volume 1, pages 53–66, 1997.
  10. M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a colony of cooperating agents. In IEEE Transactions on Systems, Man, and Cybernetics (Vol. 26, no. 1), pages 1–13, 1996.
  11. A. Drogoul. L'intelligence (Traite des Sciences cognitives), chapter Les systemes multi-agents. In Hermes Science, 2005.
  12. J. Ferber. Les Systemes Multi-Agents: vers une intelligence collective. In iia, InterEdition, 1995.
  13. J. Ferber and O. Gutknecht. A meta-model for the analysis and design of organizations in multi-agent systems. In Third International Conference on Multi-Agent Systems (ICMAS), Paris, France, pages 128–135, 1998.
  14. J. Ferber, O. Gutknecht, and F. Michel. From agents to organizations : an organizational view of multi-agent systems. In Agent-Oriented Software Engineering IV 4th International Workshop,Melbourne, Australia, Springer Verlag, Vol. 2935 of LNCS, pages 214–230, 2004.
  15. E. T. Fute and E. Tonye. Modelling and Self-organizing in MobileWireless Sensor Networks: Application to Fire Detection. In International Journal of Applied Information Systems, IJAIS, New York, USA, Vol. 5 N3, 2013.
  16. A. Nicolas Gaud. Systemes Multi-Agents Holoniques : De L'analyse a L'implantation. PhD thesis, Universite de Technologie de Belfort-Montbeliard, 2007.
  17. Dreo Johann. Adaptation de la methode des colonies de fourmis pour l'optimisation en variables continues. Application en genie biomedical. PhD thesis, LERISS, 2005.
  18. F. Lauri and F. Charpillet. Ant Colony Optimization applied to the Multi-Agent Patrolling Problem. In SIS, Indianapolis, Indiana, USA, 2006.
  19. F. Lauri and A. Koukam. A Two-Step Evolutionary and ACO Approach for Solving the Multi-Agent Patrolling Problem. In WCCI, Hong-Kong, China, 2008.
  20. A. Machado, G. Ramalho, J. D. Zucker, and A. Drogoul. Multi-Agent Patrolling : an Empirical Analysis of Alternatives Architectures. In Proc. of 3rd MABS, pages 155–170, 2002.
  21. S. Moujahed, O. Simonin, A. Koukam, and K. Ghedira. Selforganizing multiagent approach to optimization in positioning problems. Technical report, European Conference on Artificial Intelligence, 2006.
  22. H. V. D. Parunak, Brueckner, S. Fleischer, and J. Odell. A design taxonomy of multi-agent interactions. In Lecture Notes in Computer Science, 2935(4), pages 123–137, 2003.
  23. M. Reimann, M. Stummer, and K. Doerner. A savings based Ant System for the Vehicle Routing Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO, Morgan Kaufmann, New York), pages 1317– 1325, 2002.
  24. Olivier Simonin. Contribution a la resolution collective de probleme - Modeles d'auto-organisation par interactions directes et indirectes dans les SMA reactifs et robotiques. PhD thesis, HDR, Universite Henri Poincare (Nancy I), 2010.
  25. T. Stutzle and M. Dorigo. A Short Convergence Proof for a Class of Ant Colony Optimization Algorithms. In IEEE Transactions on Evolutionary Computation, Vol. 6, no. 4), pages 358–365, 2002.
  26. E. Fute Tagne. Une approche de patrouille multi-agents pour la detection d'evenements, Ph. D. thesis. In University of Technology of Belfort-Montbeliard, 2013.
  27. E. Fute Tagne, E. Tonye, F. Lauri, and A. Koukam. Multiagent Patrolling: Multi-Objective Approach of the Event Detection by a Mobile Wireless Sensors Network. In International Journal of Computer Applications, IJCA, New York, USA, Vol. 88, N12, 2014.
  28. E. D. Taillard, L. M. Gambardella, M. Gendreau, and J. Y. Potvin. Adaptive memory programming: A unified view of metaheuristics, (135). In European Journal of Operational Research, pages 1–16, 2001.
Index Terms

Computer Science
Information Sciences

Keywords

Ant agent colony metaheuristic multi-agent organization role sensor