CFP last date
20 December 2024
Reseach Article

Loss of Uniqueness of the Boundary Value Problem Involving the Mini-Drucker-Prager CLoE Model

by Mohamed Elhachmi, Jamal Chaoufi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 112 - Number 9
Year of Publication: 2015
Authors: Mohamed Elhachmi, Jamal Chaoufi
10.5120/19692-1444

Mohamed Elhachmi, Jamal Chaoufi . Loss of Uniqueness of the Boundary Value Problem Involving the Mini-Drucker-Prager CLoE Model. International Journal of Computer Applications. 112, 9 ( February 2015), 6-11. DOI=10.5120/19692-1444

@article{ 10.5120/19692-1444,
author = { Mohamed Elhachmi, Jamal Chaoufi },
title = { Loss of Uniqueness of the Boundary Value Problem Involving the Mini-Drucker-Prager CLoE Model },
journal = { International Journal of Computer Applications },
issue_date = { February 2015 },
volume = { 112 },
number = { 9 },
month = { February },
year = { 2015 },
issn = { 0975-8887 },
pages = { 6-11 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume112/number9/19692-1444/ },
doi = { 10.5120/19692-1444 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:48:58.162534+05:30
%A Mohamed Elhachmi
%A Jamal Chaoufi
%T Loss of Uniqueness of the Boundary Value Problem Involving the Mini-Drucker-Prager CLoE Model
%J International Journal of Computer Applications
%@ 0975-8887
%V 112
%N 9
%P 6-11
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The loss of positiveness of the second order work (SOW) induce the loss of uniqueness of the solution of the small strain boundary value problem as it is shown in the literature, and therefore, the onset of strain localization bands in the studied material. This paper is devoted to study the mini-CloE Drüker-Prager model. The results showed that non-associated model, although isotropic, can be the seat of strain localization in contrary to its counterpart associated isotropic model. In addition, the anisotropy is a factor encouraging the onset of strain localization. In fact, it makes the associated model subject of losing the positiveness of the SOW and accentuates the negativity of the SOW of the non-associated model. These results are similar with those established for the mini-CLoE von Mises and Mohr Coulomb models and those known for the elastic-plastic materials.

References
  1. R. Chambon. Bases théoriques d'une loi de comportement incrémentale consistante pour les sols. Rapport de recherche du groupe C. O. S. M. , 1989.
  2. R. Chambon. Une classe de lois de comportement incrémentalement non linéaires pour les sols non visqueux, résolution de quelques problèmes de cohérence. C. R. Acad. Sci. , Paris, 308 (1989), pp. 1571-1576.
  3. S. Crochepeyre. Contribution à la modélisation numérique et théorique de la localisation et de la post-localisation dans les géomatériaux, PhD thesis, Université Joseph Fourier Grenoble, 1998.
  4. R. Chambon and V. Roger. Mohr-Coulomb MiniCLoE model Uniqueness and localization studies, links with normality rule, Int. J. Num. Anal. Meth. Geom. 27 (2003), pp. 49-68.
  5. V. Roger. Etude expérimentale et théorique de la localisation des déformations dans les matériaux granulaires en condition isochore, PhD thesis, Université Joseph Fourier Grenoble, 2000.
  6. R Chambon and D. Caillerie. Existence and uniqueness theorems for boundary value problems involving incrementally non linear models, Int. J. of Solids and Structures 36 (1999), pp. 5089-5099.
  7. G. Gudehus. A comparaison of some constitutive laws for soil under radially symmetric loading and unloading. Numerical methods in geomechanics W. Wittke eds. , A. A. Balkema, 1979.
  8. R. Chambon , J. Desrues, W. Hammad and R. Charlier. CLoE, a new rate-type constitutive model for geomaterials:theoretical basis and implementation, Int. J. Num. Anal. Meth. Geom. , 18/4 (1994):pp. 253-278.
  9. R. Chambon, J. Desrues and D. Tillard. Shear moduli identification versus experimental localisation data. Localisation and Bifurcation Theory for Soils and Rocks, Chambon, Desrues, Vardoulakis eds. (1994).
  10. R. Hill. A general theory of uniqueness in elastic-plastic solids. J. Mech. Phys. Solids, 6 (1958), pp. 236-249.
  11. D. Bigoni and T. Hueckel. Uniqueness and localization I and II, associative and non-associative elasto-plasicity. Int. J. Solids Structures, 28/2 (1991), pp. 197-213.
  12. J. Desrues. Du bon usage du critère de Drüker-Prager, RFGC – 6 (2002). COSS'01.
  13. T. Désoyer and F. Cormery. On uniqueness and localization in elastic-damage materials. Int. J. Solids Structures, 31/5 (1994), pp. 733-744.
  14. B. Loret and E. Rizzi. Qualitative analysis of strain localization. Part I and II. Int. J. of Plasticity, 13/5 (1997), pp. 461-519.
Index Terms

Computer Science
Information Sciences

Keywords

Bifurcation second order work mini-CLoE Drücker-Prager limit surface.