CFP last date
20 December 2024
Reseach Article

Exact Traveling Wave Solutions for Modified Liouville Equation Arising in Mathematical Physics and Biology

by Mahmoud A.e. Abdelrahman, Emad H. M. Zahran, Mostafa M. A. Khater
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 112 - Number 12
Year of Publication: 2015
Authors: Mahmoud A.e. Abdelrahman, Emad H. M. Zahran, Mostafa M. A. Khater
10.5120/19715-0627

Mahmoud A.e. Abdelrahman, Emad H. M. Zahran, Mostafa M. A. Khater . Exact Traveling Wave Solutions for Modified Liouville Equation Arising in Mathematical Physics and Biology. International Journal of Computer Applications. 112, 12 ( February 2015), 1-6. DOI=10.5120/19715-0627

@article{ 10.5120/19715-0627,
author = { Mahmoud A.e. Abdelrahman, Emad H. M. Zahran, Mostafa M. A. Khater },
title = { Exact Traveling Wave Solutions for Modified Liouville Equation Arising in Mathematical Physics and Biology },
journal = { International Journal of Computer Applications },
issue_date = { February 2015 },
volume = { 112 },
number = { 12 },
month = { February },
year = { 2015 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume112/number12/19715-0627/ },
doi = { 10.5120/19715-0627 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:49:15.772739+05:30
%A Mahmoud A.e. Abdelrahman
%A Emad H. M. Zahran
%A Mostafa M. A. Khater
%T Exact Traveling Wave Solutions for Modified Liouville Equation Arising in Mathematical Physics and Biology
%J International Journal of Computer Applications
%@ 0975-8887
%V 112
%N 12
%P 1-6
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we employ extended tanh-function method and the (G0 G )-expansion method to find the exact traveling wave solutions involving parameters of nonlinear evolution equation Modified Liouville equation and comparison between this two method and another method which have been solved it. When these parameters are taken to be special values, the solitary wave solutions are derived from the exact traveling wave solutions. It is shown that the proposed methods provides a more powerful mathematical tool for constructing exact traveling wave solutions for many other nonlinear evolution equations.

References
  1. L. Jianming, D. Jie, and Y. Wenjun, Backlund transformation and new exact solutions of the Sharma-Tasso-Olver equation, Abstract and Applied Analysis, Article ID 935710, 8 pages, 2011.
  2. Emad H. M. Zahran and Mostafa M. A. Khater, The modified simple equation method and its applications for solving some nonlinear evolutions equations in mathematical physics. Jokull journal- Vol. 64. Issue 5 - May 2014.
  3. Mahmoud A. E. Abdelrahman, Emad H. M. Zahran and Mostafa M. A. Khater, Exact Traveling Wave Solutions for Power law and Kerr law non Linearity Using the Exp( ( ))- expansion Method, Volume 14 Iss. 4 Version 1. 0, 2014.
  4. Emad H. M. Zahran and Mostafa M. A. Khater, Exact Traveling Wave Solutions for the System of Shallow Water Wave Equations and Modified Liouville Equation Using Extended Jacobian Elliptic Function Expansion Method. American Journal of Computational Mathematics (AJCM) Vol. 4 No. 5 2014.
  5. R. Rajaram and M. Najafi, Analytical treatment and convergence of the adomian decomposition method for a system of coupled damped wave equations, Applied Mathematics and Computation, vol. 212, no. 1, pp. 72-81, 2009.
  6. J. L. Li, Adomian's decomposition method and homotopy perturbation method in solving nonlinear equations, Journal of Computational and Applied Mathematics, vol. 228, no. 1, pp. 168-173, 2009.
  7. E. Hesameddini and A. Peyrovi, Homotopy perturbation method for second painleve equation and comparisons with analytic continuation extension and chebishev series method, Journal for Theory and Applications, vol. 5, no. 13, pp. 629- 637, 2010.
  8. E. S. A. Alaidarous, F-expansion method for the nonlinear generalized Ito system, International Journal of Basic Applied Sciences, vol. 10, no. 2, pp. 90-117, 2010.
  9. Z. J. Zhou, J. Z. Fu, and Z. B. Li, Maple packages for computing Hirota's bilinear equation and multisoliton solutions of nonlinear evolution equations, Applied Mathematics and Computation, vol. 217, no. 1, pp. 92-104, 2010.
  10. A. Bekir and E. Aksoy, Exact solutions of nonlinear evolution equations with variable coefficients using exp-function method, Applied Mathematics and Computation, vol. 217, no. 1, pp. 430-436, 2010.
  11. A. H. Salas and C. A. Gomez, Application of the Cole-Hopf transformation for finding exact solutions to several forms of the seventh-order KdV equation, Mathematical Problems in Engineering, Article ID 194329, 14 pages, 2010.
  12. A. H. Salas and C. A. Gomez, Exact solutions for a third-order KdV equation with variable coefficients and forcing term, Mathematical Problems in Engineering, Article ID 737928, 13 pages, 2009.
  13. M. A. Noor and S. T. Mohyud-Din, Modified variational iteration method for goursat and laplace problems,World Applied Sciences Journal, vol. 4, no. 4, pp. 487-498, 2008.
  14. W. X. Ma and J. H. Lee, A transformed rational function method and exact solutions to the (3+1) dimensional Jimbo- Miwa equation, Chaos, Solitons and Fractals, vol. 42, no. 3, pp. 1356-1363, 2009.
  15. Y. Khan, N. Faraz, and A. Yildirim, New soliton solutions of the generalized Zakharov equations using he's variational approach, Applied Mathematics Letters, vol. 24, no. 6, pp. 965-968, 2011.
  16. S. A. El-Wakil, A. R. Degheidy, E. M. Abulwafa, M. A. Madkour, M. T. Attia, and M. A. Abdou, Exact traveling wave solutions of generalized Zakharov equations with arbitrary power nonlinearities, International Journal of Nonlinear Science, vol. 7, no. 4, pp. 455-461, 2009.
  17. S. M. Sayed, O. O. Elhamahmy, and G. M. Gharib, Traveling wave solutions for the KdV-Burgers- Kuramoto and nonlinear Schrodinger equations which describe pseudospherical surfaces, Journal of Applied Mathematics, Article ID 576783, 10 pages, 2008.
  18. J. Zhou, L. Tian, and X. Fan, Soliton and periodic wave solutions to the osmosis (2, 2) equation, Mathematical Problems in Engineering, Article ID 509390, 10 pages, 2009.
  19. M. A. Noor, K. I. Noor, E. Al-Said, and M. Waseem, Some new iterative methods for nonlinear equations, Mathematical Problems in Engineering, Article ID 198943, 12 pages, 2010.
  20. E. H. M. Zahran and Mostafa M. A. Khater, The modified simple equation method and its applications for solving some nonlinear evolutions equations in mathematical physics, Jokull journal- Vol. 64. Issue 5 - May 2014.
  21. Kamruzzaman Khan, M. Ali Akbar, Traveling Wave Solutions of Some Coupled Nonlinear Evolution Equations, Hindawi Publishing Corporation, ISRN Mathematical Physics, Vol. 2013, Article ID 685736, 8 pages.
  22. E. M. E. Zayed, K. A. E. Alurrfi, The modified extended tanhfunction method and its applications to the generalized KdVmKdV equation with any-order nonlinear terms, International Journal of Environmental Engineering Science and Technology Research Vol. 1, No. 8, August 2013, PP: 165 -170, ISSN: 2326-3113.
  23. A. M. Wazwaz, The extended tanh method for abundant solitary wave solutions of nonlinear wave equations, Appl. Math. Comput. , 187 (2007) 1131-1142.
  24. A. M. Wazwaz, Appl. Math. comput. 184, 1002-1014(2007).
  25. A. M. Wazwaz, Appl. Math. comput. 186, 130-141(2007).
  26. M. L. Wang, J. L. Zhang, X. Z. Li, The (G 0 G )- expansion method and travelling wave solutions of nonlinear evolutions equations in mathematical physics, Phys. Lett. A 372 (2008) 417-423.
  27. S. Zhang, J. L. Tong, W. Wang, A generalized (G 0 G )- expansion method for the mKdv equation with variable coefficients, Phys. Lett. A 372 (2008) 2254-2257.
  28. E. H. M. Zahran and Mostafa M. A. Khater, Exact solution to some nonlinear evolution equations by The (G 0 G )- expansion method, Jokull journal Vol. 64, issue. 5. (2014)
  29. Md. Abdus Salam, Traveling-Wave Solution of Modified Liouville Equation by Means of Modified Simple Equation Method, International Scholarly Research Network, ISRN Applied Mathematics Volume 2012, Article ID 565247, 4 pages.
Index Terms

Computer Science
Information Sciences

Keywords

Extended tanh-function method The G0 G -expansion method Modified Liouville equation Traveling wave solutions Solitary wave solutions.