CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

Numerical Method for Three-parameter Eigenvalue Problems using Newton's method based on Trace Theorem

by Songita Boruah, Arun Kumar Baruah
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 111 - Number 8
Year of Publication: 2015
Authors: Songita Boruah, Arun Kumar Baruah
10.5120/19557-1306

Songita Boruah, Arun Kumar Baruah . Numerical Method for Three-parameter Eigenvalue Problems using Newton's method based on Trace Theorem. International Journal of Computer Applications. 111, 8 ( February 2015), 10-14. DOI=10.5120/19557-1306

@article{ 10.5120/19557-1306,
author = { Songita Boruah, Arun Kumar Baruah },
title = { Numerical Method for Three-parameter Eigenvalue Problems using Newton's method based on Trace Theorem },
journal = { International Journal of Computer Applications },
issue_date = { February 2015 },
volume = { 111 },
number = { 8 },
month = { February },
year = { 2015 },
issn = { 0975-8887 },
pages = { 10-14 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume111/number8/19557-1306/ },
doi = { 10.5120/19557-1306 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:47:19.402231+05:30
%A Songita Boruah
%A Arun Kumar Baruah
%T Numerical Method for Three-parameter Eigenvalue Problems using Newton's method based on Trace Theorem
%J International Journal of Computer Applications
%@ 0975-8887
%V 111
%N 8
%P 10-14
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper Newton's method using Trace Theorem for three-parameter eigenvalue problems are discussed and some numerical results are presented to illustrate the performance and application of the method

References
  1. Atkinson, F. V. ,1972. 'Multiparameter Eigenvalue Problems', (Matrices and compact operators) Academic Press, New York, Vol. 1
  2. Atkinson, F. V. , 1968. 'Multiparameter spectral theory', Bull. Am. Math. Soc. , Vol. 75, pp(1-28)
  3. Baruah, A. K. , 1987. 'Estimation of eigen elements in a two-parameter eigen value problem', Ph. D Thesis, Dibrugarh University, Assam.
  4. Binding, P and Browne P. J. , (1989). 'Two parameter eigenvalue problems for matrices', Linear algebra and its application, pp(139-157)
  5. Browne, P. J. , 1972. 'A multiparameter eigenvalue problem'. J. Math. Analy. And Appl. Vol. 38, pp(553-568)
  6. Changmai, J. , 2009. 'Study of two-parameter eigenvalue problem in the light of finite element procedure'. Ph. D Thesis, Dibrugarh University, Assam.
  7. Collatz, L. (1968). 'Multiparameter eigenvalue problems in linear product spaces', J. Compu. and Syst. Scie. , Vol. 2, pp(333-341)
  8. Devidenko, D. F. (1960). Algorithms for -matrices, Soviet Math. , 1, 316-319.
  9. Fox, L. , Hayes, L. And Mayers, D. F. , 1981. 'The double eigenvalue problems, Topic in Numerical Analysis ', Proc. Roy. Irish Acad. Con. , Univ. College, Dublin, 1972, Academic Press, pp(93-112)
  10. Golub, G. H. and Van Loan, C. F. (1983). Matrix Computation, The Johns Hopkins University Press, Baltimore, Maryland.
  11. Horn, R. A,1994. ' Topics in Matrix Analysis'. Cambridge, Cambridge University.
  12. Hua Daia, 2007. "Numerical methods for solving multiparameter eigenvalue problems," International Journal of Computer Mathematics, 72:3, 331-347
  13. Konwar, J. , 2002. 'Certain studies of two-parameter eigenvalue problems', Ph. D Thesis, Dibrugarh University, Assam.
  14. Lancaster, P. (1966). Lambda-Matrices and Vibrating Systems, Oxford, Pergamon Press.
  15. Plestenjak, B. , 2003. Lecture Slides, ' Numerical methods for algebraic two parameter eigenvalue problems', Ljubljana, University of Ljubljans.
  16. Roach, G. F. , (1976). 'A Fredholm theory for multiparameter problems', Nieuw Arch. V. Wiskunde, Vol. XXIV(3), pp(49-76)
  17. Sleemen, B. D. , 1971. 'Multiparameter eigenvalue problem in ordinary differential equation'. Bul. Inst. Poll. Jassi. Vol. 17, No. 21 pp(51-60)
  18. Sleeman, B. D. , 1978, "Multiparameter Spectral Theory in Hilbert Space," Pitman Press, London
Index Terms

Computer Science
Information Sciences

Keywords

Multiparameter eigenvalue eigenvector Newton's method Trace theorem