CFP last date
20 December 2024
Reseach Article

On the Stability of Quadratic Functional Equation

by Sushma
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 110 - Number 16
Year of Publication: 2015
Authors: Sushma
10.5120/19405-1057

Sushma . On the Stability of Quadratic Functional Equation. International Journal of Computer Applications. 110, 16 ( January 2015), 41-45. DOI=10.5120/19405-1057

@article{ 10.5120/19405-1057,
author = { Sushma },
title = { On the Stability of Quadratic Functional Equation },
journal = { International Journal of Computer Applications },
issue_date = { January 2015 },
volume = { 110 },
number = { 16 },
month = { January },
year = { 2015 },
issn = { 0975-8887 },
pages = { 41-45 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume110/number16/19405-1057/ },
doi = { 10.5120/19405-1057 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:46:39.170923+05:30
%A Sushma
%T On the Stability of Quadratic Functional Equation
%J International Journal of Computer Applications
%@ 0975-8887
%V 110
%N 16
%P 41-45
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper the stability of quadratic functional equation, f(xy)+f(xy-1)=2f(x)+2f(y) on class of groups is obtained and also prove that quadratic functional equation may not be stable in any abelian group.

References
  1. Aoki,T. , (1950) "On stability of the linear transformation in Banach spaces," Journal of the Mathematical Society of Japan, 2,64-66
  2. Chang, S. and Kim,H. M. , (2002), On the Hyer-Ulam stability of a quadratic functional equations, J. Ineq. Appl. Math. , 33, 1-12.
  3. Chang,S. , Lee,E. H. and Kim,H. M. , (2003)On the Hyer-Ulam Rassias stability of a quadratic functional equations, Math. Ineq. Appl. Math. , 6(1), 87-95.
  4. Cholewa,P. W (1984) Remarks on the stability of functional equations, Aequationes Math. , 27, 76-86.
  5. Czerwik,S. , (1992),On the stability of a quadratic mappings in normed spaces, Abh. Math. Sem. Univ. Hamburg. ,62, 59-64.
  6. Gavruta,P. , (1994) A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. , 184,431-436.
  7. Gruber,P. M. , (1978), Stability of isometries, Trans. Amer. Math. Soc. 245, 263-277.
  8. Hyers,D. H. and Rassias,T. M. , (1992) Approximate homomorphism, Aequationes Math. , 44,125-153.
  9. Hyers,D. H. , Isac, G. , and Rassias, Th. M. , (1998), Stability of functional equations in several variables, Birkhauser Basel.
  10. Hyers,D. H. , (1941) On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. , 27, 222-223.
  11. Hyers,D. H. , Isac, G. and Rassias,Th. M. , (1998) On the asymptotically of Hyer-Ulam stability of mappings, Proc. Amer. Math. Soc. , 126),425-430.
  12. Jang,S. Y. , Lee,J. R. , Park,C. and Shin,D. Y. , (2009)Fuzzy stability of Jensen-type Quadratic functional equations, Abstract and Applied Analysis, pp-17.
  13. Mirzavaziri,M. and Moslehian,M. S. , A fixed point approach to stability of Quadratic equation, arXivimath/0512007v1 [math. FA] 1 Dec 2005.
  14. Rassias,T. M. , (1978) On stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72, 297-300.
  15. SKOF,F. , (1983) Proprieta localie approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53, 113-129
  16. Ulam,S. M. , (1960) A collection of Mathematical Problems, Interscience tracts in Pure and Applied Mathematics, U. S. A 16.
  17. Ulam,S. M. , 1963, Problems in Modern Mathematics, John Wiley & Sons, New York, USA,.
Index Terms

Computer Science
Information Sciences

Keywords

Quadratic functional equation pseudo-quadratic mapping Banach space quasi-quadratic mapping