CFP last date
20 December 2024
Reseach Article

The Hybrid Genetic Algorithm for Solving Scheduling Problems in a Flexible Production System

by Jebari Hakim, Rahali El Azzouzi Saida, Samadi Hassan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 110 - Number 12
Year of Publication: 2015
Authors: Jebari Hakim, Rahali El Azzouzi Saida, Samadi Hassan
10.5120/19369-1050

Jebari Hakim, Rahali El Azzouzi Saida, Samadi Hassan . The Hybrid Genetic Algorithm for Solving Scheduling Problems in a Flexible Production System. International Journal of Computer Applications. 110, 12 ( January 2015), 22-29. DOI=10.5120/19369-1050

@article{ 10.5120/19369-1050,
author = { Jebari Hakim, Rahali El Azzouzi Saida, Samadi Hassan },
title = { The Hybrid Genetic Algorithm for Solving Scheduling Problems in a Flexible Production System },
journal = { International Journal of Computer Applications },
issue_date = { January 2015 },
volume = { 110 },
number = { 12 },
month = { January },
year = { 2015 },
issn = { 0975-8887 },
pages = { 22-29 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume110/number12/19369-1050/ },
doi = { 10.5120/19369-1050 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:46:11.073355+05:30
%A Jebari Hakim
%A Rahali El Azzouzi Saida
%A Samadi Hassan
%T The Hybrid Genetic Algorithm for Solving Scheduling Problems in a Flexible Production System
%J International Journal of Computer Applications
%@ 0975-8887
%V 110
%N 12
%P 22-29
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In a world, which goes quickly, the company is subjected to the market evolution. Also and to cope with it, the system of production is directed towards families of products and not a single type of product. This aptitude requires a great flexibility as well material as organizational. The problems associated with FMS technology is relatively complexes compared to traditional production systems. This is the reason why the problems scheduling in these systems are NP complete. Therefore, there is no algorithm able to solve these problems exactly. The objective of this work is to solve the problem of scheduling in a flexible production system by the adaptation of the genetic algorithm and the hybrid genetic algorithm - using the simple local search and the annealing simulate - in order to deduce the best Meta heuristic, which provides the best result of makespan.

References
  1. MacCarthy B. L. et Liu J, Anew Classification Scheme For Flexible Manufacturing Systems. International Journal of Production Research, 31(2), 299-309, 1993.
  2. Brauner N. et Castagna P. , Les Systèmes Flexibles de Production. Journal Européen des Systèmes Automatisés, 2004.
  3. Adamou, M. , Contribution à la modélisation en vue de la conduite des systèmes flexibles d'assemblage à l'aide des réseaux de Petri orientés objet. Thèse de doctorat,Université de Franche-Comté, 1997
  4. Rembold U. , Nnajy B. , Storr A. , Computer Integrated Manufacturing and Engineering. Addison-Wesley, 1993.
  5. Kusiak A. , Flexible manufacturing systems: a structural approach. Int. J. of Pro. Res, vol. 23, p. 1057-1073, 1985.
  6. Browne J. , Dubois D. , Rathmill K. , Sethi S. , Stecke E. , Classification of Flexible manufacturing systems. FMS Magazine, vol. 2, p. 114 117, 1984.
  7. Maccarthy B. , Liu J. , A New Classi_cation Scheme For Flexible Manufacturing Systems. International Journal of Production Research, vol. 31, no 2, p. 299-309, 1993.
  8. R. Garey et D. S. Johnson, « Computers and Intractability: A guide to the theory of P-completeness ». Editions Freeman and Co, 1979.
  9. Kusiak, A. and Ahn, J. (1992). Intelligent scheduling of automated machining systems. International Journal of Computer Integrated Manufacturing Systems, 5(1), 3-14.
  10. Spano, M. R. , O'Grady, P. J. and Young, R. E. (1993). The design of flexible manufacturing systems. Computers in Industry, 21, 185-198.
  11. Chan, F. T. S. and Chan, H. K. (2004). A comprehensive survey and future trend of simulation study on FMS scheduling. Journal of Intelligent Manufacturing, 15(1), 87-102.
  12. Basnet, C. and Mize, J. H. (1994). Scheduling and control of flexible manufacturing systems: a critical review. International Journal of Computer Integrated Manufacturing, 7(6), 340-355.
  13. Joseph, O. A and Sridharan, R. (2012). Effects of flexibility and scheduling decisions on the performance of an FMS: simulation modelling and analysis. International Journal of Production Research, 50(7), 2058-2078.
  14. Balogun, O. O. , Popplewell, K. (1999). Toward the integration of flexible manufacturing system scheduling. International Journal of Production Research, 37(15), 3399-3428.
  15. Suresh, V. and Chaudhuri, D. (1993). Dynamic scheduling a survey of research. International Journal of Production Economics, 32(1), 53-63.
  16. Shukla, C. S. and Chen, F. F. (1996). The state of the art in intelligent real-time FMS control: a comprehensive survey. Journal of Intelligent Manufacturing, 7(6), 441-455.
  17. Stoop, P. P. M. and Weirs, V. C. S. (1996). The complexity of scheduling in practice. International Journal of Operations and Production management, 16(10), 37-53.
  18. Brandimarte, P. and Villa, A. (1999). Modelling manufacturing systems: from aggregate planning to real-time control. Springer Berlin.
  19. Ouelhadj, D. and Petrovic, S. (2009). A survey of dynamic scheduling in manufacturing systems. Journal of Scheduling, 12 (4), 417-431.
  20. Letouzey, A. (2001). Ordonnancement interactif basé sur des indicateurs : Applications à la gestion de commandes incertaines et à l'affectation des opérateurs. Thèse de doctorat, L'Institut National Polytechnique de Toulouse, France.
  21. Chu. C, Proth J. M " L'ordonnancement et ses applications" série : sciences de l'ingénieur, Collection organisation industrielle, Masson, 1996.
  22. S. K. Iyer et B. Saxena, « Improved genetic algorithm for the permutation flowshop scheduling problem ». Computers and Operations Research, vol. 31, pp. 593–606, 2004.
  23. N. Durand, J. M. Alliot et J. Noailles, « Algorithmes génétiques : un croisement pour les problèmes partiellement séparables ». Journées Evolution Artificielle Francophones, JEAF, Toulouse, 1994.
  24. Hoos H. H. and Stützle T. , Stochastic local search: Foundations and applications. Morgan Kaufmann, 2004.
  25. Moscato P. , New Ideas in Optimization, chapter Memetic Algorithms: A Short Introduction. McGraw-Hill, 1999.
  26. Sörensenaa K. , Sevauxbb M. , MA|PM: memetic algorithms with population management, aUniversity of Antwerp, Faculty of Applied Economics, Prinsstraat 13, B-2000 Antwerp, Belgium bUniversity of Valenciennes,CNRS, UMR 8530, LAMIH-SP, Le Mont Houy-Bat Jonas 2, F-59313 Valenciennescedex 9, France, 2004.
Index Terms

Computer Science
Information Sciences

Keywords

Scheduling flexible production system genetic algorithm hybrid genetic algorithm local search annealing simulate.