CFP last date
20 January 2025
Reseach Article

A Novel Approach to Hill Cipher

by Neha Sharma, Sachin Chirgaiya
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 108 - Number 11
Year of Publication: 2014
Authors: Neha Sharma, Sachin Chirgaiya
10.5120/18958-0285

Neha Sharma, Sachin Chirgaiya . A Novel Approach to Hill Cipher. International Journal of Computer Applications. 108, 11 ( December 2014), 34-37. DOI=10.5120/18958-0285

@article{ 10.5120/18958-0285,
author = { Neha Sharma, Sachin Chirgaiya },
title = { A Novel Approach to Hill Cipher },
journal = { International Journal of Computer Applications },
issue_date = { December 2014 },
volume = { 108 },
number = { 11 },
month = { December },
year = { 2014 },
issn = { 0975-8887 },
pages = { 34-37 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume108/number11/18958-0285/ },
doi = { 10.5120/18958-0285 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:43:16.106193+05:30
%A Neha Sharma
%A Sachin Chirgaiya
%T A Novel Approach to Hill Cipher
%J International Journal of Computer Applications
%@ 0975-8887
%V 108
%N 11
%P 34-37
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Hill Cipher is a first polygraphic substitution cipher that works on digraphs, trigraphs (3 letter squares) or hypothetically blocks of any magnitude. The Hill Cipher utilizes a region of science called Linear Algebra, and specifically requires the client to have a rudimentary knowledge of matrices. It additionally makes utilization of Modulo Arithmetic (like the Affine Cipher). To perform decryption, the hill cipher requires the inverse of the key matrix. This is the major shortcoming of Hill cipher since every key matrix is not invertible. We will propose a new variant of hill cipher, which will find the decryption of the cipher text even when the key matrix is non invertible.

References
  1. William Stallings " Network Security Essentials (Applications and Standards)", Pearson Education, 2004.
  2. Al-Saidi, N. M. G. and M. R. M. Said, 2009. A new approach in cryptographic systems using fractal image coding. J. Math. Stat. , 5: 183-189. DOI: 10. 3844/jmssp. 2009. 183. 189
  3. Bibhudendra, A. , 2006. Novel methods of generating self-invertible matrix for hill cipher algorithm. Int. J. Secur. , 1: 14-21. http://dspace. nitrkl. ac. in:8080/dspace/handle/2080/ 620
  4. Bibhudendra, A. , K. P. Saroj, K. P. Sarat and P. Ganapati, 2009. Image encryption using advanced hill cipher algorithm. Int. J. Recent Trends Eng. , 1: 663-667. http://www. ijrte. academypublisher. com/vol01/no0 1/ijrte0101663667. pdf
  5. Eisenberg, M. , 1998. Hill ciphers and modular linear algebra. Mimeographed notes. University of Massachusetts. http://www. apprendre-enligne. net/crypto/hill/Hillciph. pdf
  6. Ismail, I. A. , M. Amin and H. Diab, 2006. How to repair the hill cipher. J. Zhejiang Univ. Sci. A. , 7: 2022- 2030. DOI: 10. 1631/jzus. 2006. A2022
  7. Pour, D. R. , M. R. M. Said, K. A. M. Atan and M. Othman, 2009. The new variable-length keysymmetric cryptosystem. J. Math. Stat. , 5: 24-31. DOI: 10. 3844/jmssp. 2009. 24. 31
  8. Rangel-Romero, Y. , G. Vega-García, A. Menchaca- Méndez, D. Acoltzi-Cervantes and L. Martínez- Ramos et al. , 2006. Comments on How to repair the Hill cipher. J. Zhejiang Univ. Sci. A. , 9: 211- 214. DOI: 10. 1631/jzus. A072143
  9. Rushdi, A. H. and F. Mousa, 2009. Design of a robust cryptosystem algorithm for non-invertible matrices based on hill cipher. Int. J. Comput. Sci. Network Secur. , 9: 11-16 http://paper. ijcsns. org/07_book/200905/20090502. pdf
Index Terms

Computer Science
Information Sciences

Keywords

Hill Cipher Invertible key matrix offset determinant.