CFP last date
20 January 2025
Reseach Article

A SOA-based Resource Intensive and Data Aware (RIADA) Approach for Grid Computing

by Humera Bashir, Sadiq Ali Khan, Shaista Rais
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 108 - Number 10
Year of Publication: 2014
Authors: Humera Bashir, Sadiq Ali Khan, Shaista Rais
10.5120/18949-0080

Humera Bashir, Sadiq Ali Khan, Shaista Rais . A SOA-based Resource Intensive and Data Aware (RIADA) Approach for Grid Computing. International Journal of Computer Applications. 108, 10 ( December 2014), 25-30. DOI=10.5120/18949-0080

@article{ 10.5120/18949-0080,
author = { Humera Bashir, Sadiq Ali Khan, Shaista Rais },
title = { A SOA-based Resource Intensive and Data Aware (RIADA) Approach for Grid Computing },
journal = { International Journal of Computer Applications },
issue_date = { December 2014 },
volume = { 108 },
number = { 10 },
month = { December },
year = { 2014 },
issn = { 0975-8887 },
pages = { 25-30 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume108/number10/18949-0080/ },
doi = { 10.5120/18949-0080 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:42:39.043848+05:30
%A Humera Bashir
%A Sadiq Ali Khan
%A Shaista Rais
%T A SOA-based Resource Intensive and Data Aware (RIADA) Approach for Grid Computing
%J International Journal of Computer Applications
%@ 0975-8887
%V 108
%N 10
%P 25-30
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The Grid technology is flowing into large scale service oriented architecture-- a universal podium for delivering future high demand computational services. The management of resources and requests scheduling in this big range distributed environment is a complicated job, no contemplation may result in efficiency deprivation in a Grid environment and may possibly bring about big handling queues and task running delays. This paper outlines a simple and straight forward approach to incrementally maintain the area of Grid technology addressing challenges related to the problem of maintaining a Grid wide view of Grid user's resource utilization. To remain flexible this paper presents a SOA- Based RIADA (Resource Intensive and Data Aware) approach for providing a basis for more efficient and user friendlier management of resources and resource scheduling techniques in a future Grid offering a rich blend of diverse applications.

References
  1. Klaus K, R buyya and M Maheswaran. A taxonomy and survey of Grid resource management systems for distributed computing 2002. Softw. Pract. Exper. , 32:135-164.
  2. Sinha PK. Distributed Operating Systems: Concepts and Design. 1997. IEEE Press: NewYork, NY.
  3. Vahdat A. Toward wide-area resource allocation Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications. 1999. 02:930-936.
  4. Czakowski, K. , Foster, I. , Karonis, N. , Kesselman, C. , Martin, S. , Smith, W. , Tuecke, S. A Ressource management architecture for metacomputing systems. In 4th Workshop on job scheduling strategies for Parallel Processing. Orlando, FL, 1998.
  5. Buyya, R. , Abramson, D. , Giddy, J. Nimrod/G. An Architecture for a Resource Management and Scheduling System in a Global Computational Grid. In: International Conference on High Performance Computing in Asia—Pacific Region (HPC Asia 2000). Beijing , China, 2000(IEEE Computer Society)
  6. Nabrzyski, J. , Schopf, J. M. , Weglarz. , J. (eds). Grid Resource Management. Kluwer, Boston, MA 2003(Fall)
  7. Andretto, P. , Borgia, S. , Dorigo, A. , Gianelle, A. , Mordacchini, M. , et al. Practical approaches to Grid workload & resource management in the EGEE project. In. CHEP 2004, Interlaken, Switzerland, 2005.
  8. http://www. glite. org/, May 2006. European Data Grid Project http://eu-dataGrid. web. cern. ch/eu-dataGrid/
  9. Huedo, E. , Montero, R. S. , Liorente, I. M. A Framework for adaptive execution on Grids. Softw. Prac. Exp. 2004. 34, 631-651.
  10. Dss Sun Grid Engine , http://www. sun. com/software/Gridware/
  11. Manikandan. T. , Thamizharasi, M. , Chitra, R. Distributed Heterogeneous Data Management in Grid Computing .
  12. Alexandre, D. , Christian, P. , Thierry, P. Network Communications in Grid Computing: At a Crossroads Between Parallel and Distributed Worlds.
  13. Ian, F. , Carl, K. , Steven, T. The Anatomy of the Grid Enabling Scalable Virtual Organizations.
  14. Chervenak, A. , Ian, F. , Carl. K. , Salisbury, C. ,Tuecke, S. The data Grid: Towards an architecture for the distributed management and analysis of large scientific datasets.
  15. J. Nabrzyski, J. M. Schopf, J. Weglarz (Eds). Grid Resource Management. Kluwer Published, Fall 2003.
  16. Andretto, P. ,Borgia, S. , Dorigo, A. , Gianelle, A. , Mordacchini ,M. , et al. Practical Approaches to Grid Workload & Resource Management in the EGEE Project, CHEP04, Interlaken, Switzerland.
  17. European Data Grid Project: http://eu-dataGrid. web. cern. ch/eu-dataGrid/
  18. Basney, J. , Livny, L. , Mazzanti, P. , Utilizing Widely Distributed Computational Resources Efficiently with Execution Domains. Computer Physics Communications, 2001.
  19. Brooke, J. ,Fellows, D. , MacLaren, J. Resource Brokering: The EUROGRID/GRIP Approach, UK e-Science All Hands Meeting, Nottingham, UK, 31 Aug. - 3 Sep. 2004
  20. Globus Alliance (2005), Globus Toolkit 4. 0 (GT4). http://www-unix. globus. org/toolkit/docs/4. 0/GT4Facts/.
  21. Foster, I. , Kesselman, C. , Nick, J. M. &Tuecke, S. (2002), The Physiology of the Grid: An Open Grid Service Archetecture for Distributed Systems Integration. http://www. globus. org/research/papers/ogsa. pdf.
  22. Foster, I. , Czajkowski, K. , Ferguson, D. , Frey, J. , Graham, S. , Maguire, T. , Snelling, D. and Tuecke, S. (2005), 'Modeling and managing state in distributed systems: the role of ogsi and wsrf', Proceedings of the IEEE 93(3), 604–612.
  23. Emmerich, W. , Butchart, B. , Chen, L. , Wassermann, B. and Price, S. (2005). Grid Service Orchestration using the Business Process Execution Language (BPEL). Journal of Grid Computing, 3(3-4):283-304.
  24. Frey, J. , et al. , "Condor-G: A Computation Management Agent for Multi-Institutional Grids," Cluster Computing, vol. 5, 2002, pp. 237-246.
Index Terms

Computer Science
Information Sciences

Keywords

Grid technology Data Intensive Scheduling Techniques Resources Management