CFP last date
20 December 2024
Reseach Article

CTCBC - Recognition of Tumor Cells in Breast Cancer by using Clustering Methods

by S. Mythili, A.v. Senthil Kumar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 107 - Number 8
Year of Publication: 2014
Authors: S. Mythili, A.v. Senthil Kumar
10.5120/18773-0078

S. Mythili, A.v. Senthil Kumar . CTCBC - Recognition of Tumor Cells in Breast Cancer by using Clustering Methods. International Journal of Computer Applications. 107, 8 ( December 2014), 24-27. DOI=10.5120/18773-0078

@article{ 10.5120/18773-0078,
author = { S. Mythili, A.v. Senthil Kumar },
title = { CTCBC - Recognition of Tumor Cells in Breast Cancer by using Clustering Methods },
journal = { International Journal of Computer Applications },
issue_date = { December 2014 },
volume = { 107 },
number = { 8 },
month = { December },
year = { 2014 },
issn = { 0975-8887 },
pages = { 24-27 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume107/number8/18773-0078/ },
doi = { 10.5120/18773-0078 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:40:32.835676+05:30
%A S. Mythili
%A A.v. Senthil Kumar
%T CTCBC - Recognition of Tumor Cells in Breast Cancer by using Clustering Methods
%J International Journal of Computer Applications
%@ 0975-8887
%V 107
%N 8
%P 24-27
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Breast cancer is a highly disease which the women's are mostly affected. The main cause of womens death is not only by the tumor cells that affects the Breast Cancer but its metastases at different sites, such as lumph nodes and other organs (i. e lung, liver and bones). Identifying the circulating tumor cells in the blood that results from tumor cell invasion and intravascular filtration highlights its role which concerns the tumor cells aggressiveness and metastasis. Biological research regarding CTC's monitoring for Breast Cancer is limited due to the cause of indicative genes for their detection and isolation of genes . By using the direct CTC detection , we focus on the identification of factors in peripheral blood that can be indirectly reveals the presence of tumor cells. By selecting the publicly available Breast Cancer tissues and peripheral blood microarray datasets. In this 2 steps are to be followed by eliminating the procedures for the identification of several discrimant factors. The new algorithm CTCBC is proposed to identify the BC in an earlier stage. This procedure provides the facilities of identifying the major genes which involved in the causes of Breast cancer.

References
  1. D. C. danila, K. Pantel, M. fleisher, and H. I. scher " circulating tumor cells as biomarkers, " Cancer J. vol. 17, no 6 pp . 438-450, 2011.
  2. Stellins Sfakianakis, Ekaterini S,Bei, Michalis Zervakis , Member, IEEE, despoina Vassou and dimitrios Kafetzopulos , "On the identification of Circulating Tumor cells in Breast cancer " IEEe Journal of Biomedical and Halth informatics Vol18, No. 3,May 2014.
  3. T. J. Molloy, P. roepman, B. Naume, and L. J. V. Veer, " A prognostic gene expression profile that predicts circulating tumor cell presence in breast cancer patients , " plos One, vol. 7, no. 2, p. e32426, Feb 2012.
  4. M. Kandula, Ch. K. Kumar, k. Ravi Kanth, V. V. Laxmi Addala, S. Murthy, and Y. S.
  5. G. Shin T. W. Kang,S. Yang,S. J. Back,Y,-S jeong, and S. Y,Kim. "GENT: Gene expression database of normal and tumor tissues,"Cancer Inf, vol,10,pp. 149-157,2011.
  6. R-Z. Liu, K. Graham,D. D. Glubreeht,D. R. German,J. R. Mackey, and B. Godbout," Association of FAB P% expression with poor survival in triple- negative breast cancer," Amer . J. Pathology, vol. 178. no. 3. pp. 997-1008,mar. 2011.
  7. E. Enerly,I. Steinfed. K. Kleivi, S-k Leivonen,M. R, Aure, H. G. Russnes. J. A. Ronnenberg, h. G. Russnes,J. A. Ronneberg,H. Johnsen,R. Navon,E. Rodland,R. Makela,B. Naume,M. Perala,O. Kallioneiemi. V. N. Kristensen,Z. Yakhini,And A. L. Berresen-Dale. "miRNA-mRNA integrated analysis reveals roles for miKNAs in primary breast tumors ," plos One,Vol 6no. 2, P. e16915, Feb 2011.
  8. H. G. LaBreche, J. R. Nevins,and E. Huang, " Integrating factor analysis and a transgenic mouse to reveal a peripheral blood predictor of breast tumors, " BMC Med. Genomics, Vol. 4. p. 61,2011.
  9. I. Shabo,H. Olsson, O. Stal, and J. Svanvik, " Breast cancer expression of DAP12 is associated with skeletal and liver metastases and poor survival", Clin. Breast Cancer, vol. 13,pp 371-377, Oct 2013.
  10. V. Ouellet, K. Tiedemann, A. Mourskaia, J. e. fong, D. Tran-Thanh, e. Amir, M. Clemons,B. Perbal, S. V. Komarova, and P. M. Siegel, " CNN Impairs osteoblast and stimulates oseteoclast differentiation to favour breast cancer metastasis to bone," Amer. J. Pathol, Vol. 178,no. 5,Pp. 2377-2388, May 2011.
  11. G. Tsiliki, M. Zervakis, M. Ioannou, E. Sanidas, E. Stathopoulus, G. Potamias, M. Tsiknakis, and D. Kafetzopoulus, " Multi-platform data intergration in microarray analysis, " IEEE Transactions. Ing. Technol. Biomed, Vol. 15, no. 6,pp. 806-812, Nov 2011.
  12. A. Turnbull, R. Kitchen, A. Larionov, L. Renshaw, J. Dixon, and A. Sims, " Direct integration of intensity level data from Affymetrix and ILlumina microarray improves statistical power for robust reanalyis, " BMC Med. Genomics, Vol. 5, no. 1, p. 35, 2012.
  13. D. Hanahan and R. Weinberg, " The hallmarks of cancer, " Cells , Vol. 100, no. 1, pp. 57-7, 2000.
  14. F. Lozy and V. Karantza, " Autophagy and cancer cell metabolism, " Semin cell Dev. Biol, Vol. 23, no4, pp 395- 401, Jun 2012.
  15. J. H. Choi, N. R. Shin, H. J. Moon, C. H. . Kwon, G. H. Kim, G. A. Song, T. Y. Jeon, D. H. Kim, D. Y. . Park, " Identification of S100A8 and S100a9 as negative regulators for lymph node metastasis of gastric adenocarcinoma, " Histol. Histopathol, vol. 27, no. 11, pp 1439 – 1448, Nov . 2012.
  16. J. H. Hung, " Gene Set/ Pathway enrichment anlaysis, " Mehtods Mol. Biol. Vol. 939, pp. 201-213, 2013.
  17. Y. Park, T. Kitahara T. Urita. Y. Yoshida, and R. Kato, " Expected Clinical applications of Circulating tumor cells in Breast cancer, " Worls J. Clin Oncol, vol 2 , no. 8, pp. 303 – 310, 2011.
  18. S. Riethdorf and K. Pantel, " Advancing personalized cancer therapy by detection and characterization of circulating carcinoma cells , " Ann. New york Acad. Sci, Vol. 1210, no 1, pp 66-77, Oct 2010.
  19. J. Barbaz'an L. Alonso – Alconada L. Muinelo – Romay, M. Vieito , A. Abalo, M. Alonso – Nocelo, S. Candamio, E. Gallardo, B. Fern'andez, I. Abdulkader, M. de Los Angeles Casares, A. Go'mez-Tato, R. Lo'pez- L'opez, and M. Abal, " Molecular characterizaton of circulating tumor cells I human metastatic colorectal cancer, " PloS One, Vol. 7, 2012.
  20. F. J. Lopez, M. Cuadros, C. Cano, A. Concha, and A. Blanco, " Biomedical application of fuzzy association rules for identifying breast cancer biomarkers, " Med. Biol. Eng. Comput, Vol. 50, no. 9, pp. 981- 990, sep 2012.
  21. C. Clarke, S. F. Madden, P. Doolan, S. T. Aherne, H. Joyce, L. O'Discoll, W. M. Gallagher, B. T. Hennessy, M. Moriarty, J. Crown, S. Kennedy, and M. Clynes, " Correlating transcriptional networks to breast cancer survival : A large- scale coexpression analysis," Carcinogenesis, vol. 34, pp 2300- 2308, Jul. 2013.
Index Terms

Computer Science
Information Sciences

Keywords

Breast cancer (BC) signature Circulating tumor cells (CTC) Peripheral Blood (PB) Biological processes gene Elimination.