CFP last date
20 December 2024
Reseach Article

A Computational Approach to Predict the Regulation of Antioxidant Enzyme, Catalase in the Plant Defence Mechanism

by Michael Immanuel Jesse, Mohammed Riyaz. S.u., Rajamuthuramalingam, Dharanivasan. G, Kathiravan. K.
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 107 - Number 3
Year of Publication: 2014
Authors: Michael Immanuel Jesse, Mohammed Riyaz. S.u., Rajamuthuramalingam, Dharanivasan. G, Kathiravan. K.
10.5120/18734-9976

Michael Immanuel Jesse, Mohammed Riyaz. S.u., Rajamuthuramalingam, Dharanivasan. G, Kathiravan. K. . A Computational Approach to Predict the Regulation of Antioxidant Enzyme, Catalase in the Plant Defence Mechanism. International Journal of Computer Applications. 107, 3 ( December 2014), 30-37. DOI=10.5120/18734-9976

@article{ 10.5120/18734-9976,
author = { Michael Immanuel Jesse, Mohammed Riyaz. S.u., Rajamuthuramalingam, Dharanivasan. G, Kathiravan. K. },
title = { A Computational Approach to Predict the Regulation of Antioxidant Enzyme, Catalase in the Plant Defence Mechanism },
journal = { International Journal of Computer Applications },
issue_date = { December 2014 },
volume = { 107 },
number = { 3 },
month = { December },
year = { 2014 },
issn = { 0975-8887 },
pages = { 30-37 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume107/number3/18734-9976/ },
doi = { 10.5120/18734-9976 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:40:07.440892+05:30
%A Michael Immanuel Jesse
%A Mohammed Riyaz. S.u.
%A Rajamuthuramalingam
%A Dharanivasan. G
%A Kathiravan. K.
%T A Computational Approach to Predict the Regulation of Antioxidant Enzyme, Catalase in the Plant Defence Mechanism
%J International Journal of Computer Applications
%@ 0975-8887
%V 107
%N 3
%P 30-37
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Plants defense system protects themselves from pathogens in two ways by preformed mechanisms and through infection-induced responses of the immune system. It is always apparent as a restriction of pathogen growth and spread to a little zone around the infected area. During localized cell death, the visible necrotic lesion evokes up and induces the programmed cell death (apoptosis). Systemic acquired resistance (SAR) will be helpful to the infected plants after a period of 5-7 days. Salicylic acid (SA) is a plant hormone essential for the immunity in plants. SA has been found to involve in the control of microbe/pathogen-associated molecular pattern triggered immunity, effector-triggered immunity and system acquired resistance (SAR). The binding modes and the bonding pattern between salicylic acid and the enzyme catalase is still unknown. In our study, the different binding modes of salicylic acid in different pockets were analyzed. Among the chosen pockets, the best probable binding pocket was identified computationally based on the binding energy, intra-molecular energy, internal energy and inhibition constant between two molecules.

References
  1. Chester, K. S. , (1933). The problem of acquired physiological immunity in plants. Q Rev Biol. 1933; 8: 275-324.
  2. Ross, A. F. , (1961). Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14: 329-339.
  3. Ross, A. F. , (1961). Systemic acquired resistance induced by localized virus infections in plants. Virology 14: 340-358.
  4. Pil Joon Seo. , An-Kyo Lee. , Fengning Xiang. , Chung-Mo Park. , (2008). Molecular and Functional Profiling of Arabidopsis Pathogenesis-Related Genes: Insights into Their Roles in Salt Response of Seed Germination. Plant Cell Physiol. 49: 334–344.
  5. Greenberg, J. T. , and Yao N. , (2006). The role and regulation of programmed cell death in plant–pathogen interactions. Cell Microbiol. 6: 201-211.
  6. Vanacker, H. , Lu, H. , Rate, D. N. , Greenberg, J. T. , A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. Plant J. 28: 209-216.
  7. Rate, D. N. , and Greenberg, J. T. , (2001). The Arabidopsis aberrant growth and death mutant shows resistance to Pseudomonas syringae and reveals a role for NPR1 in suppressing hypersensitive cell death. Plant J. 27: 203–211.
  8. Straus, M. R. , Rietz, S. , van Themaat, E. V. , Bartsch, M. , Parker, J. E. , (2010). Salicylic acid antagonism of EDS1-driven cell death is important for immune and oxidative stress responses in Arabidopsis. Plant J. 62: 628–640.
  9. Jaspers, P. , and Kangasjärvi, J. , (2010). Reactive oxygen species in abiotic stress signaling. Physiol. Plantarum. 138: 405-413.
  10. Chen Z, Silva H, Klessig DF. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262 (1993) 1883-1886.
  11. Durner J, Klessig DF. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses, Proc Natl Acad Sci USA 1995; 92: 11312-11316.
  12. Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 2011; 62: 3321-3338.
  13. Bi Y-M, Kenton P, Mur L, Darby R, Draper J. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J 1995; 8: 235-245.
  14. Neuenschwander, U. , Vernooij, B. , Friedrich, L. , Uknes, S. , Kessmann, H. , Ryals, J. , (1995). Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance. Plant J. 8: 227-233.
  15. Lee, H. , Le?on, J. , Raskin, I. , (1995). Biosynthesis and metabolism of salicylic acid. Proc. Natl. Acad. Sci. USA 92: 4076–4079.
  16. Summermatter, C. , Sticher, L. , Métraux, J-P. , (1995). Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae. Plant Physiol. 108: 1379-1385.
  17. Amna Mhamdi. , Guillaume Queval. , Sejir Chaouch. , Sandy Vanderauwera. , Frank Van Breusegem. , Graham Noctor. , (2010). Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J. Exp. Bot. 61 (15): 4197–4220.
  18. Mohammed Riyaz S. U. , Deepan, S. , Dharanivasan, G. , Jesse, M. I. , Raja Muthuramalingam. , Kathiravan, K. , (2013). First report on a variant of Squash leaf curl China virus (SLCCNV) infecting Benincasa hispida in India, New Disease Reports 28: 20.
  19. Gasteiger, E. , Hoogland, C. , Gattiker, A. , Duvaud, S. , Wilkins, M. R. , Appel, R. D. , Bairoch, A. , (2005). Protein Identification and Analysis Tools on the ExPASy Server; (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press, pp. 571-607.
  20. Sali, A. , Potterton, L. , Yuan, F. , van Vlijmen, H. , Karplus, M. , (1995). Evaluation of comparative protein modeling by MODELLER. Proteins 23: 318–326.
  21. Abagyan, R. A. , Totrov, M. M. , Kuznetsov, D. A. , (1994). ICM: A New Method For Protein Modeling and Design: Applications to Docking and Structure Prediction From The Distorted Native Conformation, J. Comp. Chem. 15: 488-506.
  22. Laskowski, R. A. , MacArthur, M. W. , Moss, D. S. , Thornton, J. M. , (1993). PROCHECK - a program to check the stereochemical quality of protein structures. J. App. Cryst. 26: 283-291.
  23. Joe Dundas. , Zheng Ouyang. , Jeffery Tseng. , Andrew Binkowski. , Yaron Turpaz. , Jie Liang. , (2006). CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acid Research. 34: 116-118.
  24. Liang, J. , Edelsbrunner, H. , Woodward, C. (1998). Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci. 7: 1884-1897.
  25. Andrew Binkowski, T. , Naghibzadeh, S. , Liang, J. , (2003). CASTp: Computed Atlas of Surface Topography of proteins. Nucleic Acids Res. 31: 3352-3355.
  26. Bolton, E. , Wang, Y. , Thiessen, P. A. , Bryant, S. H. , (2008). PubChem: Integrated Platform of Small Molecules and Biological Activities. Chapter 12 IN Annual Reports in Computational Chemistry, Volume 4, Elsevier: Oxford, UK. pp. 217-240.
  27. Morris, G. M. , David, S. , Goodsell, S. , Halliday, R. S. , Huey, R. , Hart, W. E. , Belew, R. K. , Olson, A. J. , (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19: 1639 – 1662.
  28. Kirkman, H. N. , and Gaetani, G. F. , (1984). Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc. Natl. Acad. Sci. USA. 81: 4343-4347.
  29. Chelikani, P. , Fita, I. , Loewen, P. C. , (2004). Diversity of structures and properties among catalases. Cell Mol. Life Sci. 61: 192–208.
  30. Wojtaszek, P. , (1997). Oxidative burst: an early plant response to pathogen infection. Biochem J. 322: 681 – 692.
  31. Almeida, J. M. , Fidalgo, F. , Confraria, A. , Santos, A. , Pires, H. , Santos, I. , (2005). Effect of hydrogen peroxide on catalase gene expression, isoform activities and levels in leaves of potato sprayed with homobrassinolide and ultrastructural changes in mesophyll cells. Funct. Plant Biol. 32: 707–720.
  32. Vladimir, N. M. , and Gordan, M. C. , (1994). Significance of Root-Mean-Square Deviation in Comparing Three-dimensional Structures of Globular Proteins. J. Mol. Biol. 235: 625-634.
  33. Kuznetsov, I. B. , and McDuffie, M. , (2008). FlexPred: a web-server for predicting residue positions involved in conformational switches in proteins. Bioinformation 3: 134-136.
  34. Vincent, T. M. , Ernst-Ludwig, F. , Hermann, E. G. , (1994). Intermolecular forces and energies between ligands and receptors. Science 266: 257 – 259.
  35. Cheng, Y. , and Prusoff, W. H. , (1973). Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22: 3099-3108.
  36. Cozzini, P. , Fornabaio, M. , Marabotti, A. , Abraham, D. J. , Kellogg, G. E. , Mozzarelli, A. , (2004). Free Energy of Ligand Binding to Protein: Evaluation of the Contribution of Water Molecules by Computational Methods. Curr. Med. Chem. 11: 1345-1359.
  37. Richard, A. E. , Hans, B. , Gudrun, S. , Andreas, E. , Ulrich, B. , Wolfram, B. , Robert, H. , Thomas, P. , Rainer, R. , Wolfgang, S. , (1996). Enzyme flexibility, solvent and 'weak' interactions characterize thrombin–ligand interactions: implications for drug design. Structure 4: 1353-1362.
  38. Baker, E. N. , and Hubbard, R. E. , (1984). Hydrogen bonding in globular proteins. Prog. Biophys. Mol. Bio. 44: 97-179.
  39. Jencks, W. P. , (1981). On the attribution and additivity of binding energies. Proc. Natl. Acad. Sci. USA 78: 4046–4050.
  40. Madeswaran, A. , Umamaheswari, M. , Asokkumar, K. , Sivashanmugam, T. , Subhadradevi, V. , Jagannath, P. , (2012). Computational drug discovery of potential TAU protein kinase I inhibitors using in silico docking studies. Orient Pharm. Exp. Med. 12: 157-161.
Index Terms

Computer Science
Information Sciences

Keywords

Systemic acquired resistance Binding pocket Binding energy Docking