CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

Detection of Low Auto Correlation Binary Sequences using Meta Heuristic Approach

by B. Suribabu Naick, P. Rajesh Kumar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 106 - Number 10
Year of Publication: 2014
Authors: B. Suribabu Naick, P. Rajesh Kumar
10.5120/18560-9824

B. Suribabu Naick, P. Rajesh Kumar . Detection of Low Auto Correlation Binary Sequences using Meta Heuristic Approach. International Journal of Computer Applications. 106, 10 ( November 2014), 32-37. DOI=10.5120/18560-9824

@article{ 10.5120/18560-9824,
author = { B. Suribabu Naick, P. Rajesh Kumar },
title = { Detection of Low Auto Correlation Binary Sequences using Meta Heuristic Approach },
journal = { International Journal of Computer Applications },
issue_date = { November 2014 },
volume = { 106 },
number = { 10 },
month = { November },
year = { 2014 },
issn = { 0975-8887 },
pages = { 32-37 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume106/number10/18560-9824/ },
doi = { 10.5120/18560-9824 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:39:06.397767+05:30
%A B. Suribabu Naick
%A P. Rajesh Kumar
%T Detection of Low Auto Correlation Binary Sequences using Meta Heuristic Approach
%J International Journal of Computer Applications
%@ 0975-8887
%V 106
%N 10
%P 32-37
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper describes the method that constructs low autocorrelation binary sequences (LABS) which have applications in various engineering domains. We use a meta-heuristic search approach employing local search method known as Tabu Search, which solves mathematical optimization problems. Our paper is an extension to the existing one [1]. We were able to achieve new optimal solutions with our improved algorithm (especially for instances greater than 60 and less than 101) to that of the previous method [1]. Instead of finding optimal solutions for odd skew- symmetric instances we found the optimal solutions for all the instances. We have conducted experiments over a large number of sequences thoroughly, for multiple times to ensure the results.

References
  1. J. E. Gallardo, C. Cotta, A. J. Fernandez, "Finding Low Autocorrelation Binary Sequences with Memetic Algorithms "
  2. Abhisek Ukil, "Low autocorrelation binary sequences: Number theory-based analysis for minimum energy level, Barker codes".
  3. J. E. Gallardo, C. Cotta, A. J. Fernandez, A Memetic algorithm for the low autocorrelation binary sequence problem, in: D. Thierens, et al. (Eds. ), 9th Annual Conference on Genetic and Evolutionary Computation (GECCO 2007), ACM Press, New York, USA, 2007, pp. 1226-1233.
  4. P. Moscato, Memetic algorithms: A short introduction, in: D. Corne, M. Dorigo, F. Glover (Eds. ), New Ideas in Optimization, McGraw-Hill, Maidenhead, Berkshire, England, UK, 1999, pp. 219-234.
  5. P. Moscato, C. Cotta, A gentle introduction to memetic algorithms, in: F. Glover, G. Kochenberger (Eds. ), Handbook of Metaheuristics, Kluwer Academic Publishers, Boston MA, 2003, pp. 105-144.
  6. W. E. Hart, N. Krasnogor, J. E. Smith, Recent Advances in Memetic Algorithms, Vol. 166 of Studies in Fuzziness and Soft Computing, SpringerVerlag, Berlin Heidelberg, 2005.
  7. N. Krasnogor, J. Smith, A tutorial for competent memetic algorithms: model, taxonomy, and design issues, IEEE Transactions on Evolutionary Computation 9 (5) (2005) 474-488.
  8. F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, Boston, 1997.
  9. B. Militzer, M. Zamparelli, D. Beule, Evolutionary search for low auto correlated binary sequences, IEEE Transactions on Evolutionary Computation 2 (1) (1998) 34-39.
  10. M. J. E. Golay, The merit factor of long low autocorrelation binary sequences. IEEE Transactions on Information Theory 28 (3) (1982) 543-549.
  11. M. J. E. Golay, Sieves for low autocorrelation binary sequences, IEEE Transactions on Information Theory 23 (1) (1977) 43-51.
  12. S. D. Prestwich(2013), Improved Branch-and-Bound for Low Autocorrelation Binary Sequences, Annals of Operations Research
  13. Steven Halim, Roland H. C. Yap, and Felix Halim, Engineering Stochastic Local Search for the Low Autocorrelation Binary Sequence Problem. Cp-2008, Sydney, Australia, September 14-18, 2008
  14. Jozef Kratica, An Electromagnetism-Like Approach for Solving the Low Autocorrelation Binary Sequence Problem, INT J COMPUT COMMUN, ISSN 1841-9836 Vol. 7 (2012), No. 4 (November), pp. 687-694
  15. Jozef Kratica, "a mixed integer quadratic programming model for the low autocorrelation binary sequence problem", Serdica J. Computing 6 (2012), 385–400.
  16. S. Mertens, Exhaustive search for low-autocorrelation binary sequences, Journal of Physics A: Mathematical and General 29 (1996) 473-481.
  17. J. Bernasconi, Low autocorrelation binary sequences: statistical mechanics and configuration state analysis, Journal de Physique 48 (4) (1987) 559- 567.
  18. Q. Wang, Optimization by simulating molecular evolution, Biological Cybernetics 57 (1987) 95-101.
  19. C. de Groot, D. WÄurtz, K. Ho®mann, Low autocorrelation binary sequences: Exact enumeration and optimization by evolutionary strategies, Optimization 23 (4) (1992) 369-384.
  20. A. Reinholz, Ein paralleler genetischer algorithms zur optimierung der binarien autocorrelations-function, Diploma Thesis. UniversitÄat Bonn (October 1993).
  21. S. Prestwich, Exploiting relaxation in local search, in: J. Pearson, M. Bohlin, M. Agren (Eds. ), 1st International Workshop on Local Search Techniques in Constraint Satisfaction (LSCS 2004), Toronto, Canada, 2004, pp. 49-61.
Index Terms

Computer Science
Information Sciences

Keywords

Low autocorrelation binary sequences Meta-Heuristic approach Tabu search combinatorial optimization.