CFP last date
20 December 2024
Reseach Article

Quartic Spline Interpolation

by Suyash Dubey, Y.p. Dubey
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 105 - Number 3
Year of Publication: 2014
Authors: Suyash Dubey, Y.p. Dubey
10.5120/18358-9493

Suyash Dubey, Y.p. Dubey . Quartic Spline Interpolation. International Journal of Computer Applications. 105, 3 ( November 2014), 20-23. DOI=10.5120/18358-9493

@article{ 10.5120/18358-9493,
author = { Suyash Dubey, Y.p. Dubey },
title = { Quartic Spline Interpolation },
journal = { International Journal of Computer Applications },
issue_date = { November 2014 },
volume = { 105 },
number = { 3 },
month = { November },
year = { 2014 },
issn = { 0975-8887 },
pages = { 20-23 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume105/number3/18358-9493/ },
doi = { 10.5120/18358-9493 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:36:44.718641+05:30
%A Suyash Dubey
%A Y.p. Dubey
%T Quartic Spline Interpolation
%J International Journal of Computer Applications
%@ 0975-8887
%V 105
%N 3
%P 20-23
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we have obtained existence, uniqueness, and error bound of deficient quartic spline interpolation.

References
  1. Davis, P. J. Interpolation and approximation, Blaisdell New York 1969
  2. Dikshit,H. P. and Rana, S. S. Cubic Interpolatory splines with non uniform Meshes J. Approx. Theory Vol 45, no4(1985)
  3. C. A. Hall and Meyer, W. W. ; Optimal error bounds for cubic spline Interpolation J. Approx. Theory, 58 (1989), 59-67.
  4. Kopotun K. A. : Univariate spline equivalence of moduli of smoothness and application . Mathematics of computation 76 (2007), 930-946.
  5. Marken, K. and Reimer's M. An unconditionally convergent Methods for computing Zero's of Splines and Polynomials. Mathematics of computation 76 (2007) 845-866.
  6. Howell, G and Varma, A. K. Best error bound for quartic spline interpolation J. Approx. theory 58 (1989), 59-67.
  7. Rana, S. S. Quartic spline interpolation, Jour. of approximation Theory 57 (1989), 300-305.
  8. Rana, S. S. , Convergence of a class of deficient interpolatory splines, Rocky Mount. Journal of Math. 18 (1988) 825-831.
  9. R. P. Agrawal and P. J. Y. Wang, Error Inequalaties of Polynomial Interpolation and their application. Kumar Academic Publisher, 1993.
  10. R. H. J. G. Gmelig - Meyling. On Interpolation by Vibariate Quintic Spline of classd C2 (Constructive theory of function 87) (Eds. Sundov et. al. ) (1987) 153-61.
  11. Deboor, C. A. Practical Guide to Splines, Applied Mathematical Science, Vol. 27 Spoinger, Varlag, New York 1979.
  12. Hall, C. A. and Meyer, W. W. , J. Approximation Theory 16 (1976), pp 105-122.
  13. Howell, G. and Verma, A. K. Best Error Bound of Quartic Spline Interpolation, J. Approx. Theory 58 (1989), 58-67.
  14. Davis, P. J. Interpolation and approximation, New York, 1969.
  15. Dubey, Y. P. Best Error Bounds of Spline of degree six. Int. Jour. of Mathematical Ana. Vol. 5 (2011), pp. 21-24.
  16. Gemlling, R. H. J. and Meyling, G. in Interpolation by Bivartate Quintic Splines of Class Construction of Theory of function 87 (ed) Sendor et al (1987) 152-61.
  17. Rana, S. S. and Dubey, Y. P. Best ERror Bounds of Quintic Spline Interpolation J. Pune and App. Math 28 (10) 1937-44 (1997).
  18. Rana, S. S. and Dubey, Y. P. Best Error Bounds of deficient quartic spline interpolation, Indian Journal Pune and Appl. Math 30(4) (1999), 385-393.
  19. Meir, A. and Sharma, A. Convergence of a class of interpolatory spline J. Approx. Theory (1968), pp. 243-250.
Index Terms

Computer Science
Information Sciences

Keywords

Deficient Quartic Spline Interpolation Error Bounds