CFP last date
20 December 2024
Reseach Article

Left Ventricle Statistical Models Segmentation of Shape and Appearance for Analysis of Cardiac MRI

by Kayte Jaypalsing Natthusing, Sumegh Shrikant Tharewal, Mohammed Waseem Ashfaque, Sayyada Sara Banu, Kayte Sangramsing, Manza Ramesh Raybhan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 104 - Number 7
Year of Publication: 2014
Authors: Kayte Jaypalsing Natthusing, Sumegh Shrikant Tharewal, Mohammed Waseem Ashfaque, Sayyada Sara Banu, Kayte Sangramsing, Manza Ramesh Raybhan
10.5120/18212-8984

Kayte Jaypalsing Natthusing, Sumegh Shrikant Tharewal, Mohammed Waseem Ashfaque, Sayyada Sara Banu, Kayte Sangramsing, Manza Ramesh Raybhan . Left Ventricle Statistical Models Segmentation of Shape and Appearance for Analysis of Cardiac MRI. International Journal of Computer Applications. 104, 7 ( October 2014), 7-13. DOI=10.5120/18212-8984

@article{ 10.5120/18212-8984,
author = { Kayte Jaypalsing Natthusing, Sumegh Shrikant Tharewal, Mohammed Waseem Ashfaque, Sayyada Sara Banu, Kayte Sangramsing, Manza Ramesh Raybhan },
title = { Left Ventricle Statistical Models Segmentation of Shape and Appearance for Analysis of Cardiac MRI },
journal = { International Journal of Computer Applications },
issue_date = { October 2014 },
volume = { 104 },
number = { 7 },
month = { October },
year = { 2014 },
issn = { 0975-8887 },
pages = { 7-13 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume104/number7/18212-8984/ },
doi = { 10.5120/18212-8984 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:35:30.615138+05:30
%A Kayte Jaypalsing Natthusing
%A Sumegh Shrikant Tharewal
%A Mohammed Waseem Ashfaque
%A Sayyada Sara Banu
%A Kayte Sangramsing
%A Manza Ramesh Raybhan
%T Left Ventricle Statistical Models Segmentation of Shape and Appearance for Analysis of Cardiac MRI
%J International Journal of Computer Applications
%@ 0975-8887
%V 104
%N 7
%P 7-13
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper proposes a design of a framework structure for analysis of cardiac MRI to find out cardiovascular Disease easily and increase patent life. Segmentation of volumetric medical data is extremely time- consuming if using semi-automatically segmentation techniques with the first contribution involves the introduction of a new algorithm for fitting 4D Active Appearance Models on cardiac MRI, using the Simple interactive object extraction (SIOX), have observe a 43- fold increase in fitting accuracy that is on par with fuzzy clustering. We show the high quality results that are derived by the use of fuzzy clustering, and describe the ways in which it could improve the automated analysis of medical images.

References
  1. Medical Image Analysis 12 (2008) 335–357 Alexander Andreopoulos, John k. Tsotsos, York University , Dept of Computer science and Engineering, center for vision Research, Toronto, Ontario, Canada M3J 1P3
  2. American Heart Association, 2004. International Cardiovascular Disease Statistics. http://www. americanheart. org> (Online).
  3. 3D Active Appearance Models for Segmentation of Cardiac MRI Data durch Sebastian Zambal Matr. Nr. : 9826978 A - 3340 Waidhofen/Ybbs, Ybbsitzerstr. 44a.
  4. Automatic Segmentation of Contrast Enhanced Cardiac MRI for Myocardial Perfusion Analysis durch Andreas ch¨ollhuber Matr. Nr. : 0226055 A - 1040 Wien, Wiedner G¨urtel 24
  5. Manuel D. Cerqueira, Neil J. Weissman, Vasken Dilsizian, Alice K. Jacobs, Sanjiv Kaul, Warren K. Laskey, Dudley J. Pennell, John A. Rumberger, Thomas Ryan, and Mario S. Verani. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation, 105(4):539–42, 2002.
  6. Baker, S. , Matthews, I. , 2001. Equivalence and efficiency of image alignment algorithms. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1090–1097.
  7. Baker, S. , Goss, R. , Matthews, I. , 2004. Lucas-Kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56 (3), 221–255.
  8. Bardinet, E. , Ayache, N. , Cohen, L. D. , 1996. Tracking and motion analysis of the left ventricle with deformable superquadrics. Med. Image Anal. 1 (2), 129–150.
  9. Papademetris, X. , Sinusas, A. , Dione, D. , Constable, R. , Duncan, J. , 2002. Estimation of 3D left ventricular deformation from medical imagesusing biomechanical models. IEEE Trans. Med. Imaging 21 (7), 786–800.
  10. Davatzikos, C. , Tao, X. , Shen, D. , 2003. Hierarchical active shape models, using the wavelet transform. IEEE Trans. Med. Imaging 22 (3), 414–422.
  11. Hamarneh, G. , Gustavsson, T. , 2004. Deformable spatio-temporal shape models: extending ASM to 2D + time. Image Vis. Comput. 22 (6),461–470.
Index Terms

Computer Science
Information Sciences

Keywords

MRI SIOX Fuzzy Clustering