CFP last date
20 December 2024
Reseach Article

Finding Optimal Configuration of DSDV using Particle Swarm Optimization

by Sanjiv Sharma, A. K. Giri, Niraj Singhal
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 104 - Number 4
Year of Publication: 2014
Authors: Sanjiv Sharma, A. K. Giri, Niraj Singhal
10.5120/18191-9100

Sanjiv Sharma, A. K. Giri, Niraj Singhal . Finding Optimal Configuration of DSDV using Particle Swarm Optimization. International Journal of Computer Applications. 104, 4 ( October 2014), 27-31. DOI=10.5120/18191-9100

@article{ 10.5120/18191-9100,
author = { Sanjiv Sharma, A. K. Giri, Niraj Singhal },
title = { Finding Optimal Configuration of DSDV using Particle Swarm Optimization },
journal = { International Journal of Computer Applications },
issue_date = { October 2014 },
volume = { 104 },
number = { 4 },
month = { October },
year = { 2014 },
issn = { 0975-8887 },
pages = { 27-31 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume104/number4/18191-9100/ },
doi = { 10.5120/18191-9100 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:35:17.642150+05:30
%A Sanjiv Sharma
%A A. K. Giri
%A Niraj Singhal
%T Finding Optimal Configuration of DSDV using Particle Swarm Optimization
%J International Journal of Computer Applications
%@ 0975-8887
%V 104
%N 4
%P 27-31
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Vehicular Ad-hoc network (VANET) is prominent research area in Mobile ad-hoc network (MANET). VANET are very dynamic in nature as it has no predefined structure for communication. The performance of VANET dependents on parameter configuration of the protocol used in. The optimal parameter configuration in protocol can improve the QoS of VANET. Further, finding the optimal values of the parameters configuration is not easy because there is multiple combination of parameters configuration. Therefore, we have used particle swarm optimization technique, a metaheuristic, to find the optimal parameter configuration in real scenario. The result of experiment shows that there is 11. 96% drop in average End to End Delay, 5. 42% drop in Normalized Routing load and 5. 74% gain in Packet Delivery based on the optimal configuration found against the default parameter configuration in DSDV.

References
  1. H¨arri, J. , Filali, F. , Bonnet, C. : Mobility Models for Vehicular Ad Hoc Networks: A Survey and Taxonomy. Research Report RR-06-168 (March 2007).
  2. Blum, C. , Roli, A. : Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys 35(3), 268–308 (2003)
  3. E. Alba, B. Dorronsoro, F. Luna, A. Nebro, P. Bouvry, and L. Hogie, "A Cellular MOGA for Optimal Broadcasting Strategy in Metropolitan MANETs," Computer Communications , vol. 30, no. 4, pp. 685 – 697, (2007)
  4. Vanhatupa, T. , H¨annik¨ainen, M. , H¨am¨al¨ainen, T. : Optimization of mesh WLAN channel assignment with a configurable genetic algorithm. In: WiMeshNets 2006 (2006)
  5. Di Caro, G. A. , Ducatelle, F. , Gambardella, L. M. : AntHocNet: An Adaptive Nature-Inspired Algorithm for Routing in Mobile Ad Hoc Networks. European Transactions on Telecommunications 16(5), 443–455 (2005)
  6. Garc ?a-Nieto, J. Toutouh, and E. Alba, "Automatic Parameter Tunning with Metaheuristics of the AODV Routing Protocol for Vehicular Ad-hoc Networks," EvoApplications, part II. LNCS 6025, pp. 21-30, 2010.
  7. Huang, C. , Chuang, Y. , Hu, K. : Using particle swarm optimization for QoS in ad-hoc multicast. Eng. Appl. of Artificial Intelligence (2009) (in Press)
  8. Perkins, C. E. , Bhagwat, P. : Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers. In: ACM SIGCOMM 1994, London, UK, pp. 234–244 (1994)
  9. ©OpenStreetMapcontributors(www. openstreetmap. org/copyright).
  10. Java OpenStreetMap editor," [online] http:// josm. openstreetmap. de
  11. Poli, Riccardo, James Kennedy, and Tim Blackwell, "Particle swarm optimization" Swarm intelligence 1. 1 pp. 33-57, 2007
Index Terms

Computer Science
Information Sciences

Keywords

PSO NS-2 DSDV.