CFP last date
20 December 2024
Reseach Article

Performance Study of Swastika Shaped Microstrip Patch Antenna loaded with Meta-material Layer

by Shahriar Rahman, M Tanseer Ali
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 104 - Number 16
Year of Publication: 2014
Authors: Shahriar Rahman, M Tanseer Ali
10.5120/18284-9407

Shahriar Rahman, M Tanseer Ali . Performance Study of Swastika Shaped Microstrip Patch Antenna loaded with Meta-material Layer. International Journal of Computer Applications. 104, 16 ( October 2014), 8-12. DOI=10.5120/18284-9407

@article{ 10.5120/18284-9407,
author = { Shahriar Rahman, M Tanseer Ali },
title = { Performance Study of Swastika Shaped Microstrip Patch Antenna loaded with Meta-material Layer },
journal = { International Journal of Computer Applications },
issue_date = { October 2014 },
volume = { 104 },
number = { 16 },
month = { October },
year = { 2014 },
issn = { 0975-8887 },
pages = { 8-12 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume104/number16/18284-9407/ },
doi = { 10.5120/18284-9407 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:36:18.710201+05:30
%A Shahriar Rahman
%A M Tanseer Ali
%T Performance Study of Swastika Shaped Microstrip Patch Antenna loaded with Meta-material Layer
%J International Journal of Computer Applications
%@ 0975-8887
%V 104
%N 16
%P 8-12
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Now-a-days wireless communication has made the world a smaller than it used to be a couple of decades ago. With the evolving technologies emerging, a continuous and seamless connectivity with the artificial planetary objects such as Satellite and ground station has become a demand of time. Hence researchers are relentlessly working on to overcome the challenge of integrating a budget-friendly yet miniature in shape and multimode supporting antenna in wireless devices. Microstrip Patch Antenna, a technology invented in the 70s, can easily accommodate the entire requirement. But there are some trade-off in terms of performance and design. In this particular paper we analyzed the performance of a slotted Swastika Shaped microstrip Patch antenna with meta-material layer. The probe feeding technique and design structure provides the antenna to operate in five different frequencies. The antenna resonates at 9. 11 GHz in X band and 12. 56 GHz, 13. 82 GHz, 14. 71 GHz and 15. 50 GHz in X band with return loss of -17. 84 dB, -13. 86 dB, -13. 52 dB, -20. 4 dB and -15. 9 dB respectively of proposed antenna have been examined and discussed.

References
  1. Puente, Borja, Navarro, and Romeu, "An Iterative Model for Fractal Antennas: Application to the Sierpinski Gasket Antenna", IEEE Transactions on Antennas and Propagation, Vol. 48, No. 5, pp 713-719, May 2000.
  2. Z. D. Liu, P. S. Hall, and D. Wake, Dual-frequency planar inverted-F antenna, IEEE Trans Antennas Propagat 45 (1997), 1451–1458.
  3. David M. Pozar, "Microstrip Antennas", Proceedings of IEEE, Vol. 80, No. 1, January 1992.
  4. Ramesh, G. , B. Prakash, B. Inder, and I. Apisak, Microstrip Antenna Design Handbook, Artech House, USA, 2001.
  5. James, J. R. and Hall, P. S. , "Handbook of Microstrip Antennas" (Peter Peregrinus), Vol. 2, 1989
  6. Constantine A. Balanis, "Antenna Theory: Analysis and Design", John Wiley & Sons, 3rd Edition, 2005
  7. C. L. Tang, H. T. Chen, and K. L. Wong, "Small circular Microstrip antenna with dual-frequency operation," IEEE Electron. Lett. , vol. 33, no. 13, pp. 1112–1113, Jun. 1997.
  8. K. L. Wong and W. S. Chen, "Compact microstrip antenna with dual frequency operation," IEEE Electron. Lett. , vol. 33, no. 8, pp. 646–647, Apr. 1997.
  9. S. C. Pan and K. L. Wand, "Dual frequency triangular Microstrip antenna with shorting pin," IEEE Trans. Antennas Propag. , vol. 45, pp. 1889–1891, Dec. 1997.
  10. J. F. Zurcher, A. Skrivervik, O. Staub, and S. Vaccaro, "A compact dual-port dual-frequency printed antenna with high decoupling," Microw Opt. Technol. Lett. , vol. 19, pp. 131–137, Oct. 1998.
  11. Indra Surjati, "Dual Frequency Operation Triangular Microstrip Antenna Using A Pair Of Slit", 2005 Asia-Pacific Conference on Communications, Perth, Western Australia, pp. 125-127, 3 – 5, October 2005.
  12. L. Zaid, G. Kossiavas, J. Y. Dauvignac, J. Cazajous, and A. Papiemik, "Dual-frequency and broadband antennas with stacked quarter wavelength elements," IEEE Trans. Antennas Propag. , vol. 47, no. 4, pp. 654–660, Apr. 1999.
  13. J. S. Dahele, K. F. Lee, and D. P. Wong, "Dual frequency stacked annular ring microstrip antenna," IEEE Trans. Antennas Propag. , vol. 35, no. 11, pp. 1281–1285, Nov. 1987.
  14. F. Croq and D. M. Pozar, "Multi-frequency operation on Microstrip antennas using aperture coupled parallel resonators," IEEE Trans. Antennas Propag. , vol. 40, no. 11, pp. 1367–1374, Nov. 1992.
  15. J. Wang, R. Fralich, C. Wu, and J. Litva, "Multifunctional aperture coupled stack patch antenna," IEEE Electron. Lett. , vol. 26, no. 25, pp. 2067–2068, Dec. 1990.
  16. D. Peroulis, K. Sarabandi and L. B. P. Katehi. 2005. Design of reconfigurable slot antennas. IEEE Trans. Antennas Propag. , vol. 53, no. 7, pp. 645-654.
  17. H. Okabe and K. Takei. 2001. Tunable antenna system for 1. 9 GHz PCS handsets. IEEE Antennas Propag. Int. Symp. , vol. 1, pp. 166- 169.
  18. F. Yang and Y. R. Samii. 2002. A reconfigurable patch antenna using switchable slots for circular polarization diversity. IEEE Micro. Wireless Comp. Lett. , vol. 12, no. 3, pp. 96-98.
  19. S. Maci, G. B. Gentili, P. Piazzesi, and C. Salvador, "Dual band slot loaded patch antenna," Proc. Inst. Elect. Eng. Microw. Antennas Propag. , vol. 142, pp. 225–232, Jun. 1995.
  20. B. F. Wang and Y. T. Lo, "Microstrip antennas for dual-frequency operation," IEEE Trans. Antennas Propag. , vol. 32, pp. 938–943, Sep. 1984.
  21. Yang Fan, Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications" IEEE Transactions on Antennas and Propagation, Volume:51 , Issue: 10, pp: 2936-2946, Oct.
  22. N. G. Alexopoulos and D. R. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas," IEEE Trans. Antennas Propag. , vol. AP-32, pp. 807–816, Aug. 1984.
  23. Kim, J. , H. Kim, and K. Chun, Performance enhancements of a microstrip antenna with multiple layer substrates," International Symposium on Signals, Systems and Electronics 2007 (ISSSE '07), 319{322, 2007.
  24. K. F. Lee and R. Q Lee, "Microstrip subarray with coplanar and stacked parasitic elements", Electronics Letters, Volume: 26, Issue: 10, 1 May 1990. Transactions on Antennas and Propagation, Volume: 51 , Issue: 10, pp: 2936-2946, Oct. 2003.
  25. X. L. Bao, M. J. Ammann, "Small patch/slot antenna with 53% input impedance bandwidth", Electronics Letters, Volume 43, Issue 3, pp. 146 – 148, Feb 2007.
  26. Razin Ahmed, Md. Fokrul Islam, "E shaped Microstrip Patch Antenna for Ku band" Published in International Journal of Computer Applications Volume 80, No. 6, October 2013
  27. X Yang, D Sun, T Zuo, X Chen, K Huang , "Analysis and realization of improving the patch antenna gain based on metamaterials" - International Journal of Applied Electromagnetics and Mechanics, pp. 17-25, Volume 44, Number 1 / 2014, Dec 2013
Index Terms

Computer Science
Information Sciences

Keywords

Microstrip Patch Antenna (MPA) Rectangular Microstrip Patch Antenna (RMPA) Electromagnetic (EM) Meta-material