CFP last date
20 December 2024
Reseach Article

Unsupervised Neural Network-Naive Bayes Model for Grouping Data Regional Development Results

by Azhari Sn, Tb. Ai Munandar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 104 - Number 15
Year of Publication: 2014
Authors: Azhari Sn, Tb. Ai Munandar
10.5120/18282-9253

Azhari Sn, Tb. Ai Munandar . Unsupervised Neural Network-Naive Bayes Model for Grouping Data Regional Development Results. International Journal of Computer Applications. 104, 15 ( October 2014), 39-44. DOI=10.5120/18282-9253

@article{ 10.5120/18282-9253,
author = { Azhari Sn, Tb. Ai Munandar },
title = { Unsupervised Neural Network-Naive Bayes Model for Grouping Data Regional Development Results },
journal = { International Journal of Computer Applications },
issue_date = { October 2014 },
volume = { 104 },
number = { 15 },
month = { October },
year = { 2014 },
issn = { 0975-8887 },
pages = { 39-44 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume104/number15/18282-9253/ },
doi = { 10.5120/18282-9253 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:36:17.353580+05:30
%A Azhari Sn
%A Tb. Ai Munandar
%T Unsupervised Neural Network-Naive Bayes Model for Grouping Data Regional Development Results
%J International Journal of Computer Applications
%@ 0975-8887
%V 104
%N 15
%P 39-44
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Determination quadrant development has an important role in order to determine the achievement of the development of a district, in terms of the sector's gross regional domestic product (GDP). The process of determining the quadrant development typically uses Klassen rules based on its sector GDP. This study aims to provide a new approach in the conduct of regional development quadrant clustering using cluster techniques. Clustering is performed based on the average value of the growth and development of a district contribution compared with the average value and contribution of the development of the province based on data in comparison with a year of data to be compared. Testing models of clustering, performed on a dataset of two provinces, namely Banten (as a data testing) and Central Java (as the training data), to see the accuracy of the classification model proposed. The proposed model consists of two learning methods in it, namely unsupervised (Self Organizing Map / SOM-NN) method and supervised (Naive Bayess). SOM-NN method is used as a learning engine to generate training data for the target Class that will be used in the machine learning Naive Bayess. The results showed the clustering accuracy rate of the model was 98. 1%, while the clustering accuracy rate of the model results compared to manual analysis shows the accuracy of the typology Klassen smaller, ie 29. 63%. On one side, clustering results of the proposed model is influenced by the number and keagaraman data sets used

References
  1. Riyadi, Dedi M. Masykur, 2000. Pembangunan Daerah Melalui Pengembangan Wilayah. Disampaikan pada Acara Diseminasi dan Diskusi Program-Program Pengembangan Wilayah dan Pengembangan Ekonomi Masyarakat di Daerah, Hotel Novotel, Bogor, 15-16 Mei 2000. Available at http://www. bappenas. go. id/files/2913/5228/1449/bangda-bangwil1__20091008103033__2165__1. pdf
  2. Ginanjar Kartasasmita, 2007, Revitalisasi Administrasi Publik Dalam Mewujudkan Pembanguna Berkelanjutan, Makalah yang disampaikan pada acara Wisuda Ke-44 Sekolah Tinggi Administrasi Lembaga Administrasi Negara, Jakarta, 3 November 2007
  3. Apkasi, 2013, Motor Penggerak Pembangunan Daerah, Majalah Otonom, Edisi I / September 2013.
  4. Fachrurrazy, 2009. Analisis Penentuan Sektor Unggulan Perekonomian Wilayah Kabupaten Aceh Utara Dengan Pendekatan Sektor Pembentuk PDRB. Tesis, Sekolah Pascasarjana - Universitas Sumatera Utara.
  5. Sudarti, 2009. Penentuan Leading Sektor Pembangunan Daerah Kabupaten/Kota Di Jawa Timur, Jurnal HUMANITY, Volume V, Nomor 1, September 2009: 68 - 79
  6. Yao, K. C. , Mignotte, M. , Collet, C. , Galerne, P. , and Bure, G. , 2000, Unsupervised segmentation using a self-organizing map and a noise model estimation in sonar imagery, Pattern Recognition 33 (2000) 1575-1584
  7. Paul, Sourav. , and Gupta, Mousumi, 2013, Image Segmentation By Self Organizing Map With Mahalanobis Distance, International Journal of Emerging Technology and Advanced Engineering, Volume 3, Issue 2, February 2013
  8. Amerijckx, C. , Legat, J-D. , and Verleysen, M. , 2003, Image Compression Using Self-Organizing Maps, Systems Analysis Modelling Simulation, Vol. 43, No. 11, November 2003, pp. 1529–1543
  9. Gharib, T. F. , Fouad, M. M. , Mashat, A. , Bidawi, I. , 2012, Self Organizing Map -based Document Clustering Using WordNet Ontologies, IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
  10. ChandraShekar, B. H. , and Shoba, G. , 2009, Classification Of Documents Using Kohonen's Self-Organizing Map, International Journal of Computer Theory and Engineering, Vol. 1, No. 5
  11. Raje, D. V. , Purohit, H. J. , Tambe, S. S. , and Kulkarni, B. D. , 2010, Self-organizing maps: A tool to ascertain taxonomic relatedness based on features derived from 16S rDNA sequence, J. Biosci. 35(4), December 2010, 617–627
  12. Lien, Che-Hui. , Ramirez, A. , and Haines, G. H. , 2006, Capturing and Evaluating Segments: Using Self-Organizing Maps and K-Means in Market Segmentation, Asian Journal of Management and Humanity Sciences, Vol. 1, No. 1, pp. 1-15
  13. Budayan, C. , Dikmen, I. and Birgonul, T. , 2007, Strategic group analysis by using self organizing maps. Procs 23rd Annual ARCOM Conference, 3-5 September 2007
  14. Mitrokotsa, A. , Douligeris, C. , 2005, Detecting Denial of Service Attacks Using Emergent Self-Organizing Maps, Proceeding of 2005 IEEE International Symposium on Signal Processing and Information Technology
  15. Koua, E. L. , 2003, Using Self-Organizing Maps For Information Visualization And Knowledge Discovery In Complex Geospatial Datasets, Proceedings of the 21st International Cartographic Conference (ICC) 'Cartographic Renaissance'
  16. Mohapatra, S. S. , and Bhuyan, P. K. , 2012, Self Organizing Map Of Artificial Neural Network For Defining Level Of Service Criteria Of Urban Streets, International Journal for Traffic and Transport Engineering, 2012, 2(3): 236 – 252
  17. Zadeh, M. A. , 2004, Prediction Of Aftershocks Pattern Distribution Using Self-Organising Feature Maps, Proceeding of 13th World Conference on Earthquake Engineering, Vancouver, B. C. , Canada
  18. Xhemali, Daniela. , Christopher J. HINDE and Roger G. STONE, 2009. Naïve Bayes vs. Decision Trees vs. Neural Networks in the Classification of Training Web Pages, IJCSI International Journal of Computer Science Issues, Vol. 4, No. 1, 2009, pp. 16 – 23
  19. Maniya, Hardik. , Mosin I. Hasan dan Komal P. Patel, 2011. Comparative study of Naïve Bayes Classifier and KNN for Tuberculosis, International Conference on Web Services Computing (ICWSC) 2011, pp. 22 – 26
  20. Rennie, Jason D. M. , Lawrence Shih, Jaime Teevan dan David R. Karger, 2003. Tackling the Poor Assumptions of Naive Bayes Text Classifiers, Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.
  21. Ting, S. L. , W. H. Ip dan Albert H. C. Tsang, 2011. Is Naïve Bayes a Good Classifier for Document Classification?, nternational Journal of Software Engineering and Its Applications, Vol. 5, No. 3, July, 2011, pp. 37 - 46.
  22. Kohonen, T. , Oja, E. , Simula, O. , Visa, A. , Kangas, J. , 1996, Engineering Applications of the Self-Organizing Map, Proceedings of The IEEE, Vol. 48. No. 10, October 1996.
Index Terms

Computer Science
Information Sciences

Keywords

GDP naive bayess self organizing map Klassen tipology classification.