CFP last date
20 December 2024
Reseach Article

Intelligent Model for Manual Sorting of Plastic Wastes

by Kudirat Jimoh, Anuoluwapo Ajayi, Oluwatobi Ayilara
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 101 - Number 7
Year of Publication: 2014
Authors: Kudirat Jimoh, Anuoluwapo Ajayi, Oluwatobi Ayilara
10.5120/17699-8675

Kudirat Jimoh, Anuoluwapo Ajayi, Oluwatobi Ayilara . Intelligent Model for Manual Sorting of Plastic Wastes. International Journal of Computer Applications. 101, 7 ( September 2014), 20-26. DOI=10.5120/17699-8675

@article{ 10.5120/17699-8675,
author = { Kudirat Jimoh, Anuoluwapo Ajayi, Oluwatobi Ayilara },
title = { Intelligent Model for Manual Sorting of Plastic Wastes },
journal = { International Journal of Computer Applications },
issue_date = { September 2014 },
volume = { 101 },
number = { 7 },
month = { September },
year = { 2014 },
issn = { 0975-8887 },
pages = { 20-26 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume101/number7/17699-8675/ },
doi = { 10.5120/17699-8675 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:31:03.207981+05:30
%A Kudirat Jimoh
%A Anuoluwapo Ajayi
%A Oluwatobi Ayilara
%T Intelligent Model for Manual Sorting of Plastic Wastes
%J International Journal of Computer Applications
%@ 0975-8887
%V 101
%N 7
%P 20-26
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The need for an automated sorting system cannot be overemphasized due to the growing needs for high throughput and accuracy. Manual sorting method may achieve good accuracy, but at the expense of throughput. This study formulates an automated plastic wastes identification model to overcome the limitation of the manual sorting method. The proposed identification model employed singleton Sugeno fuzzy model, image processing and template matching techniques as its classifier using physical properties of plastics such as power spectrum of sound, plastic average area and plastic recycling code as feature set. The model was developed and simulated in the MATLAB R2012a environment. The performance evaluation of the model was carried out using three performance metrics, namely, accuracy, precision and recall. The model obtained average accuracy of 0. 88, average precision value of 0. 77 and average recall value of 0. 25, respectively for the plastic types (PET, HDPE, LDPE, and PP) used in this study.

References
  1. Ahmad, S. R. , 2004. A new technology for automatic identification and sorting of plastics for recycling. Environ. Technol. 25 (10), 1143–1149.
  2. Bae, J. S and Song, T. L. 2008. Image Tracking Algorithm using Template Matching and PSNF-m. International Journal of Control, Automation, and Systems, 6(3), 413-423
  3. Bezati, F. Froelich, D. Massardier, V. Maris, E. 2010. Addition of tracers into the polypropylene in view of automatic sorting of plastic wastes using X-ray fluorescence spectrometry, Waste management, 30,591–596
  4. Coghlan, A. 1993. Infrared Makes Light Work of Sorting Plastics. New Scientist, 139(1882), 20.
  5. Froelich, D. , Maris, E. , Haoues, N. , Chemineau, L. , Renard, H. , Abraham, F. , Lassartesses, R. 2007. State of the art of plastic sorting and recycling: feedback to vehicle design. Miner. Eng. 20 (9 SPEC. ISS. ), pp. 902–912.
  6. Hearn, G. L. , Ballard, J. R. 2005. The use of electrostatic techniques for the identification and sorting of waste packaging materials. Resour. Conserv. Recycl. , 44(1):91-98
  7. Huth-Fehre, T. Feldhoff, R. Kantimm, T. Quick, L. Winter, F. , Cammann, K. , van den Broek, W. Wienke, D. , Melssen, W. and Buydens, L. 1995. NIR-Remote Sensing and Artificial Neural Networks for Rapid Identification of Post Consumer Plastics. Journal of Molecular Structure, 348, 143-146.
  8. Hayes, M. H. Statistical Digital Signal Processing and Modeling. New York: John Wiley & Sons, 1996.
  9. Inculet, I. 1992. Electrostatic separation of mixed plastic waste Proc. Davos 92 Recycle
  10. Masoumi H, Safavi S. M. , and Khani Z. 2012. Identification and Classification of PlasticResins using Near Infrared ReflectanceSpectroscopy. International Journal of Mechanical and Industrial Engineering 6,213-220
  11. Mclvor, R. T, McCloskey, A. G, Humphreys, P. K, Maguire, L. P. 2004. Using a fuzzy approach to support financial analysis in the corporate acquisition process. Expert Systems with Applications, 27,533-547
  12. Moore, S. 1999. Infrared scanner affords easy plastic identification. Mod. Plast. 76, 32–33.
  13. Safavi, S. M. , Masoumi, H. , Mirian, S. S. , Tabrizchi, M. 2010. Sorting of polypropylene resins by color in MSW using visible reflectance spectroscopy. Waste Management 30, 2216-2222.
  14. Scavino, E. , Wahab, D. A. Hussain, A. Basri, H. and Mustafa. M. M. 2009. Application of automated image analysis to the identification and extraction of recyclable plastic bottles. Journal of Zhejiang University of Science A, 10(6):794-799
  15. Scheirs, J. 1998. Polymer Recycling, Wiley Publication,
  16. Scott, D. M. 1995. A Two-Colour Near-Infrared Sensor for Sorting Recycled Plastic Waste. Measurement Science and Technology, 6(2), 156 -159.
  17. Sommer, E. J. 1996. Methods and technologies for post-consumer plastic identification and sorting. Proc. SPE 3rd Annual Recycling Conf. , Chicago, IL, pp. 299-304.
  18. Sugeno, M. and Kang, G. T. 1988. Structure identification of fuzzy model, Fuzzy Sets and Systems, 28, 15-33.
  19. Tachwali, Y. Al-Assaf, Y. Al-Ali, A. R. 2007. Automatic multistage classification system for plastic bottles recycling, Resources, Conservation & Recycling. 52(2), 266-285
  20. Takagi, T. and Sugeno, M. 1985. Fuzzy identification of systems and its applications to modeling and control, IEEE transactions on Systems, Man, and Cybernetics 15, 116-132.
  21. Taylor, B. 2006. Visions of plastic. Recycl. Today, 44(4), 48-56.
  22. Wadhawan, S. , Goel G. and Kaushik S. 2013. Data Driven Fuzzy Modeling for Sugeno and Mamdani Type Fuzzy Model using Memetic Algorithm . Information Technology and Computer Science, 8, 24-37
  23. Wahab, D. A. , Abidin, A. , Azhari, C. H. 2007. Recycling trends in the plastics manufacturing and recycling companies in Malaysia. J. Appl. Sci. , 7(7), 1030-1035.
  24. Wahab, D. A. , Hussain, A. , Scavino, E. , Mustafa, M. M. , Basri, H. 2006. Development of a prototype automated sorting system for plastic recycling. Am. J. Appl. Sci. , 3(7), 1924-1928.
  25. Zulkifley, M. A, Mustafa, M. M and Hussain, A. 2013. Probabilistic White Strip Approach to Plastic Bottle Sorting System,, IEEE International Conference on Image Processing, Melbourne, Australia. pp: 3162-3166.
Index Terms

Computer Science
Information Sciences

Keywords

Plastic wastes inference system sorting resin code.