CFP last date
20 January 2025
Reseach Article

Threshold based Approach for Image Blind Deconvolution

by Rachit Garg, Maitreyee Dutta, Ramteke Mamta G.
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 101 - Number 6
Year of Publication: 2014
Authors: Rachit Garg, Maitreyee Dutta, Ramteke Mamta G.
10.5120/17694-8665

Rachit Garg, Maitreyee Dutta, Ramteke Mamta G. . Threshold based Approach for Image Blind Deconvolution. International Journal of Computer Applications. 101, 6 ( September 2014), 37-42. DOI=10.5120/17694-8665

@article{ 10.5120/17694-8665,
author = { Rachit Garg, Maitreyee Dutta, Ramteke Mamta G. },
title = { Threshold based Approach for Image Blind Deconvolution },
journal = { International Journal of Computer Applications },
issue_date = { September 2014 },
volume = { 101 },
number = { 6 },
month = { September },
year = { 2014 },
issn = { 0975-8887 },
pages = { 37-42 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume101/number6/17694-8665/ },
doi = { 10.5120/17694-8665 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:30:59.725457+05:30
%A Rachit Garg
%A Maitreyee Dutta
%A Ramteke Mamta G.
%T Threshold based Approach for Image Blind Deconvolution
%J International Journal of Computer Applications
%@ 0975-8887
%V 101
%N 6
%P 37-42
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Having attractiveness in digital cameras, the digital image processing is getting more imperative nowadays. One of the most common problems facing with digital photography is noise and blurring that needs restoration. In this paper, we present a new method for image blind deconvolution [2]. The Proposed Method employs threshold based image restoration technique in blind image deconvolution. The goal of this work is to restore the image from a noisy and blurred image where the blurring function is not known. The blur process can be formulated as the image takes convolution operation with the Gaussian noise. One of the basic blind deconvolution method is an iterative blind deconvolution method. [5], [31]. Although Iterative Blind Deconvolution method can recover the image from blurred image, it is sensitive to initial estimation and computation time required is more. In order to decrease this computation time and better visual results than Iterative blind Deconvolution, we proposed a threshold based Blind image deconvolution algorithm.

References
  1. B. Bocquet, R. Kit-Abdelmalek and Y. Leroy. 1993. Deconvolution and Weiner Filtering of Short range Radiometric Images. IEEE Electronics Letters, Vol. 29, Issue: 18, pp 1628-1629.
  2. Nicholas G. Paulter, Jr. 1994. A Casual Regularizing Deconvolution filter for optimal waveform Reconstruction. IEEE Transaction on Instrumentation and Measurement", Vol. 43, Issue: 5, pp 740-747.
  3. Asoke K. Nandi, DetlefMampel and Burkhard Roscher. 1995 Comparative study of deconvolution algorithms with applications in non-destructive testing. IEEE Institute of Electrical Engineers, pp 1/1 - 1/6.
  4. Deepa Kundur and Dimitrios Hatzinakos. 1996. Blind Image Deconvolution. IEEE Signal Processing Magazine. Vol. 13, Issue: 3, pp 43-64.
  5. David S. C. Biggs and Mark Andrews. 1997. Iterative blind Deconvolution of extended objects. IEEE International Conference on Image Processing, Vol. 2, pp 454-457.
  6. Dominikus Noll. 1997. Restoration of Degraded Images with Maximum Entropy. Journal of Global Optimization, Vol. 10, Issue: 1, pp 91-103.
  7. Yujiro Inouye and Takehito Sat. 1997. On-line Algorithms for Blind Deconvolution of Multichannel Linear Time-Invariant Systems. IEEE Signal Processing Workshop on Higher order Statistics, pp 204-208.
  8. Balvinder Singh and M. U. Siddiqi. 1997. MAP Estimation of Finite Gray-Scale Digital Images Corrupted by Supremum/In?mum Noise. IEEE Transaction on Image Processing, Vol. 6, No. 8 pp 1077-1088.
  9. Y. Yitzhaky and N. S. Kopeika. 1998. Identi?cation of Blur Parameters from Motion Blurred Images. ELSEVIER Journal of Graphical Models and Image, Vol. 59, Issue: 5, pp 310-320.
  10. H. Malcolm Hudson, Thomas C M Lee. 1998. Maximum Likelihood restoration and choice of smoothing parameters in deconvolution of image data subject to Poisson noise. ELSEVIER Journal of Computational Statistics and data Analysis, Vol. 26 Issue: 4, pp 393-410.
  11. Deepa Kundur, Dimitrios Hatzinakos. 1998. A Novel Blind Deconvolution Scheme for Image Restoration Using Recursive Filtering. IEEE Transaction on Signal Processing, Vol. 46, No. 2, pp 375-390.
  12. W. Miskin and D. J. C. MacKay. 2000. Ensemble learning for blind image separation and Deconvolution. Springer Advances in Independent Component Analysis. pp 123-141.
  13. Boaz Cohen and lts'hak Dinstein. 2000. Motion Estimation in Noisy Ultrasound Images by Maximum Likelihood. 15th IEEE International Conference on Pattern recognition, Vol. 3 pp 182- 185.
  14. In Jae Myung. 2002. Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, Science Direct, Vol. 47 Issue: 1, pp 90-100.
  15. M. M. Bronstein, A. M. Bronstein, M. Zibulevsky, and Y. Y. Zeevi. 2005. Blind deconvolution of images using optimal sparse representations. IEEE Transactions on Image Processing , Vol. 14, Issue 6 pp 726–736.
  16. R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman. 2006. removing camera shake from a single photograph. ACM Transaction on Graphics, Vol. 25, Issue: 3, pp 78-794.
  17. Anat Levin. 2006. Blind motion deblurring using image statistics", Conference on Advances in Neural Information Processing Systems (NIPS).
  18. Masayuki Tanaka, Kenichi Yoneji, and Masatoshi Okutomi. 2007. Motion Blur Parameter Identification from a Linearly Blurred Image. IEEE International Conference on Consumer Electronics, pp 1-2.
  19. Leticia Vega-Alvarado, Izaskun Elezgaray, Agn Hémar, Michel Menard, Christophe Ranger Gabriel Corkidi. 2007. A comparison of image deconvolution algorithms applied to the detection of endocytic vesicles in fluorescence images of neural proteins. 29th IEEE Annual International Conference on Engineering in Medicine and Biology Society, pp 755-758.
  20. N. Joshi, R. Szeliski, and D. Kriegman. 2008. PSF Estimation using Sharp Edge Prediction. IEEE Conference on Computer Vision and Pattern Recognition, pp 1-8.
  21. Q. Shan, J. Jia, and A. Agarwala. 2008. High-quality motion deblurring from a single image. ACM Transaction on Graphics, Vol. 27, Issue: 3, Article No. 73.
  22. Anat Levin, Yair Weiss, Fredo Durand, William T. Freeman. 2009. Understanding and evaluating blind deconvolution algorithms. IEEE Conference on Computer Vision and Pattern Recognition, pp 1964- 1971.
  23. Li Dongxing, Han Jinhong and Xu Dong. 2009. A Novel Restoration Algorithm of the Turbulence Degraded Images Based on Maximum Likelihood Estimation. 9th IEEE International Conference on Electronics Measurement and Instruments, pp 4-171 – 4-176.
  24. Feng DuanYanning Zhang. 2009. The Estimation of Blur Based on Image Information. 5th IEEE International Conference on Image and Graphics, pp 109-112.
  25. Chao Wang, LiFeng Sun, Zhuo Yuan Chen, Shi Qiang Yang and Jian Wei Zhang. 2009. High quality non-blind motion deblurring. IEEE International Conference, pp 153-156.
  26. Tal Kenig, ZviKam, and ArieFeuer. 2010. Blind Image Deconvolution Using Machine Learning for Three-Dimensional Microscopy. IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 32, Issue: 12, pp 2191-2204.
  27. Le Zou, Howard Zhou, Samuel Cheng and Chuan. 2010. Dual range deringing for non-blind image deconvolution. 17th IEEE International Conference on Image Processing, pp 1701-1704.
  28. Jong-Ho Lee and Yo-Sung Ho. 2010. High-quality Non- Blind Image Deconvolution. 4th IEEE Pacific-Rim Symposium on Image and Video Technology, pp 282-287.
  29. Tingbo Hou, Sen Wang, Hong Qin , Rodney L. Miller. 2010. Image deconvolution using multigrid natural image prior and its applications. 17th IEEE International Conference on Image Processing, pp 3569-3572.
  30. Ms. S. Ramya, Ms. T. mercy Christial 2011. Restoration of blurred images using blind deconvolution algorithm. IEEE International Conference on Emerging trends in Electrical and Computer Technology ICETECT-2011, pp 496 -499.
  31. Lopamudra Kundu, Bhabatosh Chanda. 2011. A Novel Iterative Blind Deconvolution using Morphology. 2nd IEEE International Conference on Emerging Applications of Information Technology, pp 181-184.
  32. Dilip Krishnan, Terence Tay and Rob Fergus. 2011. Blind Deconvolution Using a Normalized Sparsity Measure. IEEE conference on Computer Vision and Pattern Recognition, pp 233-240.
  33. Sunghyun Cho, Jue Wang and Seungyong Lee. 2011. Handling Outliers in Non-Blind Image Deconvolution. IEEE International Conference on Computer Vision, pp 495-502.
  34. Anat Levin, Yair Weiss, Fredo Durand, William T. Freeman. 2011. Ef?cient Marginal Likelihood Optimization in Blind Deconvolution. IEEE Conference on Computer Vision and Pattern Recognition, pp 2657-2664.
  35. Sudipto Dolui Oleg V. Michailovich 2011. Blind deconvolution of medical ultrasound images variable Splitting and proximal point methods. IEEE International Symposium on Biomedical Imaging from Nano to Macro, pp 1-5.
  36. Feng Xue and Thierry Blu. 2012. Sure-based blind Gaussian deconvolution. IEEE Statistical Signal Processing Workshop (SSP), pp 452-455.
  37. Jiunn-Lin Wu, Chia-Feng Chang and Chun-Shih Chen. 2012. An Improved Richardson-Lucy Algorithm for Single Image Deblurring Using Local Extrema Filtering. IEEE International Symposium on intelligent signal processing and communication system, pp 27-32.
  38. Margret Keuper, Maja Temerinac-Ott, Jan Padeken, Patrick Heun, Thomas Brox, Hans Burkhardt, Olaf Ronneberger 2012. Blind deconvolution with PSF regularization for wide-field microscopy. 9th IEEE International Symposium on Biomedical Imaging, pp 1292-1295.
  39. Wende Dong, Huajun Feng, Zhihai Xu, Qi Li. 2013. Blind image deconvolution using the Fields of Experts prior. ELSEVIER Journal of Optics Communication Vol. 124, Issue: 18, pp 3601-3606.
  40. M. K. Khan, S. Morigi, L. Reichel and F. Sgallari. 2013. Iterative methods of Richardson-Lucy type for image deblurring. Journal of NUMERICAL MATHEMATICS: Theory, Methods and Applications, Vol. 6 pp 262-275.
  41. James Gregson Felix Heide Matthias Hulli Mush?qur Rouf Wolfgang Heidrich. 2013. Stochastic Deconvolution. IEEE conference on computer Vision and Pattern Recognition, pp 1043-1050.
  42. Renaud Morin, Stephanie Bidonz, Adrian Basaraby, Denis Kouam. 2013. Semi-blind deconvolution for resolution enhancement in ultrasound imaging. IEEE International Conference on Image Processing, pp 1413-1417.
Index Terms

Computer Science
Information Sciences

Keywords

Non-Blind Blind Deconvolution PSF PSNR MSE Computation Time Threshold.