CFP last date
20 January 2025
Reseach Article

Complex Dynamics of Jungck Ishikawa Iterates for Hyperbolic Cosine Function

by Suman Pant, Yashwant S Chauhan, Priti Dimri
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 101 - Number 4
Year of Publication: 2014
Authors: Suman Pant, Yashwant S Chauhan, Priti Dimri
10.5120/17674-8506

Suman Pant, Yashwant S Chauhan, Priti Dimri . Complex Dynamics of Jungck Ishikawa Iterates for Hyperbolic Cosine Function. International Journal of Computer Applications. 101, 4 ( September 2014), 14-23. DOI=10.5120/17674-8506

@article{ 10.5120/17674-8506,
author = { Suman Pant, Yashwant S Chauhan, Priti Dimri },
title = { Complex Dynamics of Jungck Ishikawa Iterates for Hyperbolic Cosine Function },
journal = { International Journal of Computer Applications },
issue_date = { September 2014 },
volume = { 101 },
number = { 4 },
month = { September },
year = { 2014 },
issn = { 0975-8887 },
pages = { 14-23 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume101/number4/17674-8506/ },
doi = { 10.5120/17674-8506 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:30:48.041608+05:30
%A Suman Pant
%A Yashwant S Chauhan
%A Priti Dimri
%T Complex Dynamics of Jungck Ishikawa Iterates for Hyperbolic Cosine Function
%J International Journal of Computer Applications
%@ 0975-8887
%V 101
%N 4
%P 14-23
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The dynamics of transcendental function is one of emerging and interesting field of research nowadays. We introduce in this paper the complex dynamics of hyperbolic cosine function of the type {cosh (zn ) + z + c = 0} and applied Jungck Ishikawa iteration to generate new Relative Superior Mandelbrot set and Relative Superior Julia set. In order to solve this function by Jungck –type iterative schemes, we write it in the form of Sz = Tz, where the function T, S are defined as Tz = cosh( zn ) +c and Sz = - z. Only mathematical explanations are derived by applying Jungck Ishikawa Iteration for transcendental function in the literature but in this paper we have generated relative Mandelbrot sets and Relative Julia sets.

References
  1. Suman Joshi, Dr. Yashwant Singh Chauhan and Dr. Ashish Negi, "New Julia and Mandelbrot Sets for Jungck Ishikawa Iterates" International Journal of Computer Trends and Technology (IJCTT), vol. 9, no. 5, pp. 209-216, 2014.
  2. Suman Joshi, Dr. Yashwant Singh Chauhan and Dr. Priti Dimri ,"Complex Dynamics of Multibrot Sets for Jungck Ishikawa Iteration" International Journal of Research in Computer Applications and Robotics (IJRCAR), vol. 2, no. 4, pp. 12-22, 2014.
  3. Suman Pant, Dr. Yashwant Singh Chauhan and Dr. Priti Dimri ,"Complex Dynamics of Sine Function using Jungck Ishikawa Iteration" International Journal of Computer Applications (IJCA), vol. 94, no. 10, pp. 44-54, 2014.
  4. E. F. Glynn, "The Evolution of the Gingerbread Mann",Computers and Graphics 15,4 (1991), 579 -582.
  5. U. G. Gujar and V. C. Bhavsar, "Fractals from z=z?+c in the Complex c-Plane", Computers and Graphics 15, (1991), 441-449.
  6. U. G. Gujar, V. C. Bhavsar and N. Vangala, "Fractalsfrom z=z?+c in the Complex z-Plane", Computersand Graphics 16, 1 (1992), 45-49.
  7. R. Chugh and V. Kumar, "Strong Convergence and Stability results for Jungck-SP iterative scheme, International Journal of Computer Applications, vol. 36,no. 12, 2011.
  8. S. Ishikawa, "Fixed points by a new iteration method", Proc. Amer. Math. Soc. 44 (1974), 147-150.
  9. G. Julia, "Sur 1' iteration des functions rationnelles", JMath Pure Appli. 8 (1918), 737-747
  10. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.
  11. Eike Lau and Dierk Schleicher, "Symmetries of fractals revisited. " Math. Intelligencer (18) (1) (1996), 45-51. MR1381579 Zbl 0847. 30018.
  12. J. Milnor, "Dynamics in one complex variable; Introductory lectures", Vieweg (1999).
  13. Shizuo Nakane, and Dierk Schleicher, "Non-local connectivity of the tricorn and multicorns", Dynamical systems and chaos (1) (Hachioji, 1994), 200-203, World Sci. Publ. , River Edge, NJ, 1995. MR1479931.
  14. Rajeshri Rana, Yashwant S Chauhan and Ashish Negi. Article: Non Linear Dynamics of Ishikawa Iteration. International Journal of Computer Applications 7(13):43–49, October 2010. Published By Foundation of Computer Science. ISBN: 978-93-80746-97-5.
  15. Ashish Negi, "Generation of Fractals and Applications", Thesis, Gurukul Kangri Vishwvidyalaya, (2005).
  16. M. O. Olatinwo, "Some stability and strong convergence results for the Jungck-Ishikawa iteration process,"Creative Mathematics and Informatics, vol. 17, pp. 33-42, 2008.
  17. Peitgen, H. O. , Jurgens, H. and Saupe, D. , Chaos and Fractals: New Frontiers of Science. Springer-Verlag, New York, Inc, 2004.
  18. A. G. D. Philip: "Wrapped midgets in the Mandelbrot set", Computer and Graphics 18 (1994), no. 2, 239-248.
  19. Shizuo Nakane, and Dierk Schleicher, "On multicorns and unicorns: I. Antiholomorphic dynamics. Hyperbolic components and real cubic polynomials", Internat. J. Bifur. Chaos Appl. Sci. Engrg, (13) (10) (2003), 2825-2844.
  20. M. O. Osilike, "Stability results for Ishikawa fixed point iteration procedure", Indian Journal of Pure and Appl. Math. , 26(1995), 937-945.
Index Terms

Computer Science
Information Sciences

Keywords

Complex dynamics Relative Superior Mandelbrot set Relative Julia set Jungck Ishikawa Iteration