CFP last date
20 December 2024
Reseach Article

Diagnosis of Breast Cancer using Clustering Data Mining Approach

by Jahanvi Joshi, Rinal Doshi, Jigar Patel
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 101 - Number 10
Year of Publication: 2014
Authors: Jahanvi Joshi, Rinal Doshi, Jigar Patel
10.5120/17722-7611

Jahanvi Joshi, Rinal Doshi, Jigar Patel . Diagnosis of Breast Cancer using Clustering Data Mining Approach. International Journal of Computer Applications. 101, 10 ( September 2014), 13-17. DOI=10.5120/17722-7611

@article{ 10.5120/17722-7611,
author = { Jahanvi Joshi, Rinal Doshi, Jigar Patel },
title = { Diagnosis of Breast Cancer using Clustering Data Mining Approach },
journal = { International Journal of Computer Applications },
issue_date = { September 2014 },
volume = { 101 },
number = { 10 },
month = { September },
year = { 2014 },
issn = { 0975-8887 },
pages = { 13-17 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume101/number10/17722-7611/ },
doi = { 10.5120/17722-7611 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:31:55.169507+05:30
%A Jahanvi Joshi
%A Rinal Doshi
%A Jigar Patel
%T Diagnosis of Breast Cancer using Clustering Data Mining Approach
%J International Journal of Computer Applications
%@ 0975-8887
%V 101
%N 10
%P 13-17
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The main objective of the research is to early diagnosis of the breast cancer patients. Nowadays Brest cancer becomes very major disease in many women not only in India but also in other country. For early diagnosis of the breast cancer patients, clustering data mining algorithm used to detect breast cancer. For the experimental purpose breast cancer dataset carried out form the UCI web data repository. The selection of appropriate clustering data mining technique is a challenge for the diagnosis of breast cancer. To get early result the challenges takes four clustering data mining techniques. This research becomes very helpful to doctor for diagnosis breast cancer and also helpful to patients for early treatment.

References
  1. Rinal Doshi, "DEVELOPMENT OF PATTERN KNOWLEDGE DISCOVERYFRAMEWORK USING CLUSTERING DATA MINING ALGORITHM", International journal of computer engineering & Technology (IJCET), ISSN 0976 – 6367(Print), ISSN 0976 – 6375(Online), Volume 4, Issue 3, May-June (2013), pp. 101-112
  2. WEKA, "The University of Waikato", machine learning group, weka documentation.
  3. McCready T1, Littlewood D, Jenkinson J, "Breast self-examination and breast awareness: a literature review" access from http://www. ncbi. nlm. nih. gov/pubmed/15840071 on 16/6/2014
  4. Gauthier, E. Inst. Mines-Telecom, Telecom Bretagne, Brest, France Brisson, L. ; Lenca, P. ; Clavel-Chapelon, F. ; Ragusa, S. "Challenges to building a platform for a breast cancer risk score:a literature review" access from http://ieeexplore. ieee. org/search/searchresult. jsp?newsearch=true&queryText=Brest+cancer+papre+in+data+mining on 17/6/2014
  5. Gauthier, E. Inst. Mines-Telecom, Telecom Bretagne, Brest, France Brisson, L. ; Lenca, P. ; Clavel-Chapelon, F. ; Ragusa, S. "Caffeine Intake, Race, and Risk of Invasive Breast Cancer Lessons Learned from Data Mining a Clinical Database a literature review" access from http://ieeexplore. ieee. org/search/searchresult. jsp?newsearch=true&queryText=Brest+cancer+papre+in+data+mining on 17/6/2014
  6. XiangchunXiong Comput. & Inf. Sci. , Towson Univ. , MD, USA Yangon Kim ; YuncheolBaek ; Dae Wong Rhee ; Soo-Hong Kim"Analysis of breast cancer using data mining & statistical techniques genetic data a literature review"access from http://ieeexplore. ieee. org/search/searchresult. jsp?newsearch=true&queryText=Brest+cancer+papre+in+data+mining on 17/6/2014
  7. Mansour, Nashat ; Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon ; Zantout, Rouba ; El-Sibai, Mirvat"Mining breast cancer genetic data a literature review" access from http://ieeexplore. ieee. org/search/searchresult. jsp?newsearch=true&queryText=Brest+cancer+papre+in+data+mining on 17/6/2014
  8. Abdelaal, M. M. A. ; Stat. & Math. Dept. , Ain Shams Univ. , Cairo, Egypt ; Farouq, M. W. ; Sena, H. A. ; Salem, A. -B. M. "Using data mining for assessing diagnosis of breast cancer a literature review"access from http://ieeexplore. ieee. org/search/searchresult. jsp?newsearch=true&queryText=Brest+cancer+papre+in+data+mining on 17/6/2014
  9. Qi Fan ; Dept. of Comput. Sci. , Huaibei Coal Ind. Teacher Coll. , Huaibei, China ; Chang-Jie Zhu ; Liu Yin"Predicting breast cancer recurrence using data mining techniques a literature review" access from http://ieeexplore. ieee. org/search/searchresult. jsp?newsearch=true&queryText=Brest+cancer+papre+in+data+mining on 17/6/2014
  10. Malpani, R. ; Comput. Sci. Dept. , California State Univ. , Sacramento, CA, USA ; Lu, M. ; Du Zhang ; Wing Kin Sung"Mining transcriptional association rules from breast cancer profile data a literature review"access from http://ieeexplore. ieee. org/search/searchresult. jsp?newsearch=true&queryText=Brest+cancer+papre+in+data+mining on 17/6/2014
  11. Giarratana, G. ; Dipt. diElettron. e Inf. , Politec. di Milano, Milan, Italy ; Pizzera, M. ; Masseroli, M. ; Medico, E. "Data Mining Techniques for the Identification of Genes with Expression Levels Related to Breast Cancer Prognosis a literature review"access from http://ieeexplore. ieee. org/search/searchresult. jsp?newsearch=true&queryText=Brest+cancer+papre+in+data+mining on 17/6/2014
  12. Shah, C. ; Inf. Technol. Dept. , ShankersinhVaghelaBapu Inst. of Technol. , Gandhinagar, India ; Jivani, A. G. "Comparison of data mining classification algorithms for breast cancer prediction a literature review"access from http://ieeexplore. ieee. org/search/searchresult. jsp?newsearch=true&queryText=Brest+cancer+papre+in+data+mining on 17/6/2014
  13. Menolascina, F. ; Clinical & Exp. Oncology Lab. , National Cancer Inst. , Bari ; Tommasi, S. ; Paradiso, A. ; Cortellino, M. "Novel Data Mining Techniques in aCGH based Breast Cancer Subtypes Profiling: the Biological Perspective a literature review" access from http://ieeexplore. ieee. org/search/searchresult. jsp?newsearch=true&queryText=Brest+cancer+papre+in+data+mining on 17/6/2014
  14. Palivela, H. ; Dept. Of Comput. Sci. & Eng. , East West Inst. of Technol. , Bangalore, India ; Yogish, H. K. ; Vijaykumar, S. ; Patil, K. "Survey on mining techniques for breast cancer related data a literature review" access from http://ieeexplore. ieee. org/search/searchresult. jsp?newsearch=true&queryText=Brest+cancer+papre+in+data+mining on 17/6/2014
  15. Shah, C. , ShankersinhVaghelaBapu Inst. of Technol. , Gandhinagar, India ; Jivani, A. G. 5"A comparative study of breast cancer detection based on SVM and MLP BPN classifier a literature review" access from http://ieeexplore. ieee. org/search/searchresult. jsp?newsearch=true&queryText=Brest+cancer+papre+in+data+mining on 17/6/2014
  16. Radha, R. ; Dept. of Comput. Sci. , S. D. N. B. Vaishnave Coll. of Women, Chennai, India ; Rajendiran, P. "Using K-Means Clustering Technique to Study of Breast Cancer a literature review" access from http://ieeexplore. ieee. org/search/searchresult. jsp?newsearch=true&queryText=Brest+cancer+papre+in+data+mining on 17/6/2014
  17. Vanisri, D. ; Kongu Eng. Coll. , Erode, India ; Loganathan, C. "Fuzzy pattern cluster scheme for breast cancer datasets a literature review" access from http://ieeexplore. ieee. org/search/searchresult. jsp?newsearch=true&queryText=Brest+cancer+papre+in+data+mining on 17/6/2014
  18. Voth, D. "Using AI to detect breast cancer a literature review" access from http://ieeexplore. ieee. org/search/searchresult. jsp?newsearch=true&queryText=Brest+cancer+papre+in+data+mining on 17/6/2014
  19. National Cancer Institute (2006). Probability of breast cancer in American women. National Cancer Institute Fact Sheet. Available online: http://www. cancer. gov/cancertopics/factsheet/Detection/probability-breast-cancer.
Index Terms

Computer Science
Information Sciences

Keywords

Clustering WEKA Simple K-means Breast Cancer Data Mining