CFP last date
20 December 2024
Reseach Article

Article:Adaptive Modeling of Digital Straightness Applied to Geometric Representation Enhancement

by Leoncio C. Barros Neto, AndrÈ R. Hirakawa, Antonio M. A. Massola
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 10 - Number 2
Year of Publication: 2010
Authors: Leoncio C. Barros Neto, AndrÈ R. Hirakawa, Antonio M. A. Massola
10.5120/1452-1963

Leoncio C. Barros Neto, AndrÈ R. Hirakawa, Antonio M. A. Massola . Article:Adaptive Modeling of Digital Straightness Applied to Geometric Representation Enhancement. International Journal of Computer Applications. 10, 2 ( November 2010), 31-39. DOI=10.5120/1452-1963

@article{ 10.5120/1452-1963,
author = { Leoncio C. Barros Neto, AndrÈ R. Hirakawa, Antonio M. A. Massola },
title = { Article:Adaptive Modeling of Digital Straightness Applied to Geometric Representation Enhancement },
journal = { International Journal of Computer Applications },
issue_date = { November 2010 },
volume = { 10 },
number = { 2 },
month = { November },
year = { 2010 },
issn = { 0975-8887 },
pages = { 31-39 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume10/number2/1452-1963/ },
doi = { 10.5120/1452-1963 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T19:58:45.791947+05:30
%A Leoncio C. Barros Neto
%A AndrÈ R. Hirakawa
%A Antonio M. A. Massola
%T Article:Adaptive Modeling of Digital Straightness Applied to Geometric Representation Enhancement
%J International Journal of Computer Applications
%@ 0975-8887
%V 10
%N 2
%P 31-39
%D 2010
%I Foundation of Computer Science (FCS), NY, USA
Abstract

For representing of digitized straight line segments (DSLS), each of the available research techniques has its advantages and appropriate applications considering the complexities of real world scenarios. Based on adaptive finite automaton (AFA), we propose an alternative paradigm that is convenient for problems modeled by a set of rules. The main objective is to investigate the representation of DSLS through adaptivity, aiming to exploit the ability to represent tolerances, scalability, errors and deviations in angle or in length of the mentioned segments through a device called adaptive DSLS, for short ADSLS. Consequently, ADSLS is shown to be effective to represent segments; furthermore, it is able to adapt, reacting to circumstance stimuli in a single pass.

References
  1. Gonzalo Bailador and Gracián Triviño. Pattern recognition using temporal fuzzy automata. Fuzzy Sets and Systems, 161(1):37 – 55, 2010. Special section: New Trends on Pattern Recognition with Fuzzy Models.
  2. Partha Bhowmick and Bhargab B. Bhattacharya. Fast polygonal approximation of digital curves using relaxed straightness properties. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29:1590–1602, 2007.
  3. R. Brons. Linguistic methods for the description of a straight line on a grid. Computer Graphics and Image Processing, 3(1):48 – 62, 1974.
  4. I. Debled-Rennesson, F. Feschet, and J. Rouyer-Degli. Optimal blurred segments decomposition of noisy shapes in linear time. Computers & Graphics, 30(1):30 – 36, 2006.
  5. Leo Dorst and Arnold W.M. Smeulders. Discrete straight line segments: Parameters, primitives and properties. Vision Geometry, series Contemporary Mathematics, American Mathematical Society, vol.119:pp.45–62, 1991.
  6. J. Feder. Languages of encoded line patterns. Information and Control, 13(3):230–244, 1968.
  7. F. Feschet. The lattice width and quasi-straightness in digital spaces. In Proceedings of the..., Tampa, FL, 2008. INT. CONFERENCE PATTERN RECOGNITION.
  8. C. Fiorio, D. Jamet, and J. L. Toutant. Discrete circles: an arithmetical approach with non constant thickness. In Electronic Imaging, editor, Proceedings of the..., Volume 6066, San Jose (CA), 2006. SPIE VISION GEOMETRY XIV.
  9. H. Freeman. Boundary encoding and processing. Picture Proceedings and Psychopictorics, pages 241–266, 1970.
  10. J. R. Garitagoitia, J. R. G. de Mendívil, J. Echanobe, J. J. Astrain, and F. Fariña. Deformed fuzzy automata for correcting imperfect strings of fuzzy symbols. IEEE Transactions on Fuzzy Systems, 11(3):299–310, 2003.
  11. Zhu S.-C.b Han, F.a. Bottom-up/top-down image parsing with attribute grammar. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(1):59–73, 2009.
  12. S.H.Y. Hung. On the straightness of digital arcs. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI- 7(2):203–215, 1985.
  13. Nahum Kiryati and Olaf Kübler. Chain code probabilities and optimal length estimators for digitized three-dimensional curves. Pattern Recognition, 28(3):361–372, 1995.
  14. R. A. Klette and A. B. Rosenfeld. Digital straightness – a review. Discrete Applied Mathematics, 139(1-3):197–230, 2004.
  15. Reinhard Klette and Azriel Rosenfeld. Digital geometry: geometric methods for digital picture analysis. Morgan Kaufmann, 2004.
  16. H. C. Lee and K. S. Fu. Using the FFT to determine digital straight line chain codes. Computer Graphics and Image Processing, 18(4):359–368, 1982.
  17. H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall, 1981.
  18. Shu-Xiang Li and Murray H. Loew. Analysis and modeling of digitized straight-line segments. In Proceedings of the..., pages 294–296, Rome, Italy, 1988. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION.
  19. Peter F.M. Nacken. Metric for line segments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(12):1312–1318, 1993.
  20. João José Neto. Adaptive rule-driven devices - general formulation and case study. In Springer-Verlag, editor, Proceedings of the..., volume 2494, pages 234–250, Pretoria, South Africa, July 2001. IMPLEMENTATION AND APPLICATION OF AUTOMATA 6TH INTERNATIONAL CONFERENCE, CIAA 2001.
  21. J. P. Reveillès. Géométrie discrète, calcul en nombres entiers et algorithmique. PhD thesis, Université Louis Pasteur, Strasbourg, 1991.
  22. R. L. A. Rocha and J. J. Neto. Autômato adaptativo, limites e complexidade em comparação com máquina de Turing. In Faculdade SENAC de Ciências Exatas e Tecnologia, editor, Proceedings of the..., page 33 a 48. PROCEEDINGS OF THE SECOND CONGRESS OF LOGIC APPLIED TO TECHNOLOGY, 2001.
  23. Azriel Rosenfeld. Digital straight line segments. IEEE Transactions on Computers, C-23(12):1264–1269, 1974.
  24. S. Shlien. Segmentation of digital curves using linguistic techniques. Computer Vision, Graphics and Image Processing, 22(2):277–286, 1983.
  25. N.A. Visnevski, F. Dilkes, S. Haykin, and V. Krishna murthy. Non-self-embedding context-free grammars for multi-function radar modeling-electronic warfare application. In Proceedings of the... IEEE INTERNATIONAL RADAR CONFERENCE, IEEE, 2005.
  26. Kai Ching You and King-Sun Fu. A syntactic approach to shape recognition using attributed grammars. IEEE transactions os systems, man, and cybernetics, 9(6):334–345, June 1979.
Index Terms

Computer Science
Information Sciences

Keywords

Digital Geometry Learning and Adaptive Systems Pattern Recognition Automata Classification Error Recovery