CFP last date
20 February 2025
Reseach Article

Stability Criteria for Stochastic Recurrent Neural Networks with Two Time-Varying Delays and Impulses

by R.RAJA, S.Marshal Anthoni
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 1 - Number 28
Year of Publication: 2010
Authors: R.RAJA, S.Marshal Anthoni
10.5120/514-831

R.RAJA, S.Marshal Anthoni . Stability Criteria for Stochastic Recurrent Neural Networks with Two Time-Varying Delays and Impulses. International Journal of Computer Applications. 1, 28 ( February 2010), 28-35. DOI=10.5120/514-831

@article{ 10.5120/514-831,
author = { R.RAJA, S.Marshal Anthoni },
title = { Stability Criteria for Stochastic Recurrent Neural Networks with Two Time-Varying Delays and Impulses },
journal = { International Journal of Computer Applications },
issue_date = { February 2010 },
volume = { 1 },
number = { 28 },
month = { February },
year = { 2010 },
issn = { 0975-8887 },
pages = { 28-35 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume1/number28/514-831/ },
doi = { 10.5120/514-831 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T19:49:20.355633+05:30
%A R.RAJA
%A S.Marshal Anthoni
%T Stability Criteria for Stochastic Recurrent Neural Networks with Two Time-Varying Delays and Impulses
%J International Journal of Computer Applications
%@ 0975-8887
%V 1
%N 28
%P 28-35
%D 2010
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper is concerned with a stability problem for a class of stochastic recurrent impulsive neural networks with both discrete and distributed time-varying delays. Based on Lyapunov-Krasovskii functional and the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of impulsive neural networks. Two numerical examples are given to illustrate the effectiveness of the stability results.

References
  1. 1. S. Blythe, X. Mao, X. Liao, Stability of stochastic delay neural networks, J. Franklin Inst. 338 (2001) 481-495.
  2. 2. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA 1994.
  3. 3. J. Cao, New results concerning exponential stability and periodic solutions of delayed cellular neural networks, Phys. Lett. A 307 (2003) 136-147.
  4. 4. J. Cao, J. Wang, Global asymptotic stability of a general class of recurrent neural networks with time-varying delays, IEEE Trans. Circ. Syst. I 50 (2003) 34-44.
  5. 5. J. Cao, J. Wang, Global asymptotic and robust stability of recurrent neural networks with time delays, IEEE Trans. Circ. Syst. I 52 (2005) 417-426.
  6. 6. J. Cao, K. Yuan, H. Li, Global asymptotic stability of recurrent neural networks with multiple discrete delays and distributed delays, IEEE Trans. Neural Networks 17 (2006) 1646-1651.
  7. 7. T. Chen, W. Lu, G. Chen, Dynamical behaviors of a large class of general delayed neural networks, Neural Comput.} 17 (2005) 949-968.
  8. 8. L.O. Chua, L. Yang, Cellular neural networks: theory and applications, IEEE Trans. Circ. Syst. I 35 (1988) 1257-1290.
  9. 9. M.A. Cohen, S. Grossberg, Absolute stability and global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. Syst. Man Cybern. 13 (1983) 815-826.
  10. 10. Dong Li, Dan Yang, HUi Wang, Xiaohong Zhang, Shilong Wang. Asymptotical stability of multi-delayed cellular neural networks with impulsive effects, Physica A, 2008.
  11. 11. J.J. Hopfield, Neurons with graded response have collective computational properties like those of two-stage neurons, Proc. Natl. Acad. Sci. USA 81 (1984) 3088-3092.
  12. 12. J. Hu, S. Zhong, L. Liang, Exponential stability analysis of stochastic delayed cellular neural network, Chaos Solitons Fract. 27 (2006) 1006-1010.
  13. 13. H. Huang, J. Cao, Exponential stability analysis of uncertain stochastic neural networks with multiple delays, Nonlinear Anal.: Real World Appl., in press.
  14. 14. H. Huang, D.W.C. Ho, J. Lam, Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays, IEEE Trans. Circ. Syst. II} 52 (2005) 251-255.
  15. 15. B. Kosko, Adaptive bidirectional associative memories, Appl. Opt. 26 (1987) 4947-4960. X.X. Liao, X. Mao, Exponential stability and instability of Stochastic neural networks, Stochastic. Anal. Appl. 14 (1996) 165-185.
  16. 16. Y. Liu, Z. Wang, X. Liu, Design of exponential state estimators for neural networks with mixed time delays, Phys. Lett. A 364 (2007) 401-412.
  17. 17. Liu YR, Wang ZD, Liu XH. On global exponential stability of generalized stochastic neural networks with mixed time-delays, Neurocomputing 70 (2006) 314-326.
  18. 18. V.Lakshikantham D, D.Bainov, P.S. Simenov, Theory of impulsive differential equations, World Scientific, Singapore.
  19. 19. L. Wan, J. Sun, Mean square exponential stability of stochastic delayed Hopfield neural networks, {\it Phys. Lett. A} 343 (2005)306-318.
  20. 20. Z. Wang, S. Lauria, J. Fang, X. Liu, Exponential stability of uncertain stochastic neural networks with mixed time-delays, Chaos Solitons Fract. 32 (2007) 62-72.
  21. 21. Z. Wang, Y. Liu, X. Liu, On global asymptotic stability of neural networks with discrete and distributed delays, Phys. Lett. A 345 (2005) 299-308.
  22. 22. Z. Wang, H. Shu, Y. Liu, D.W.C. Ho, X. Liu, Robust stability analysis of generalised neural networks with discrete and distributed time delays, Chaos Solitons Fract. 30 (2006) 886-896.
  23. 23. Z. Wang, H. Shu, J. Fang, X. Liu, Robust stability for stochastic Hopfield neural networks with time delays, Nonlinear Anal.: Real World Appl. 7 (2006) 1119-1128.
  24. 24. D.Y.Xu, Z.C.Yang, Impulsive delay differential inequality and stability of neural networks, J. Math. Aanl. Appl. 305 (2005) 107-120.
  25. 25. D.Y.Xu, w.Zhu, S.J.long, Global exponential stability of impulsive integro-differential equation, Nonlinear Analysis 64 (2006) 2805-2816.
  26. 26. H. Yang, T. Chu, LMI conditions for stability of neural networks with distributed delays, Chaos Solitons Fract. 34 (2007) 557-563.
  27. 27. T.Yang, Impulsive control, IEEE Trans. Automat Control 44 (1999)1081-1083.
  28. Q. Zhang, X. Wei, J. Xu, Global exponential stability for nonautonomous cellular neural networks with unbounded delays, Chaos Solitons Fract., in press. Forman, G. 2003.
Index Terms

Computer Science
Information Sciences

Keywords

Global asymptotic stability Linear matrix inequality Lyapunov-Krasovskii functional Time-varying delays Stochastic recurrent neural networks distributed delays impulsive