CFP last date
20 December 2024
Reseach Article

Microarray Image Denoising using Independent Component Analysis

by Arunakumari Kakumani, Kaustubha A. Mendhurwar, Rajasekhar Kakumani
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 1 - Number 11
Year of Publication: 2010
Authors: Arunakumari Kakumani, Kaustubha A. Mendhurwar, Rajasekhar Kakumani
10.5120/234-388

Arunakumari Kakumani, Kaustubha A. Mendhurwar, Rajasekhar Kakumani . Microarray Image Denoising using Independent Component Analysis. International Journal of Computer Applications. 1, 11 ( February 2010), 87-93. DOI=10.5120/234-388

@article{ 10.5120/234-388,
author = { Arunakumari Kakumani, Kaustubha A. Mendhurwar, Rajasekhar Kakumani },
title = { Microarray Image Denoising using Independent Component Analysis },
journal = { International Journal of Computer Applications },
issue_date = { February 2010 },
volume = { 1 },
number = { 11 },
month = { February },
year = { 2010 },
issn = { 0975-8887 },
pages = { 87-93 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume1/number11/234-388/ },
doi = { 10.5120/234-388 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T19:46:07.911503+05:30
%A Arunakumari Kakumani
%A Kaustubha A. Mendhurwar
%A Rajasekhar Kakumani
%T Microarray Image Denoising using Independent Component Analysis
%J International Journal of Computer Applications
%@ 0975-8887
%V 1
%N 11
%P 87-93
%D 2010
%I Foundation of Computer Science (FCS), NY, USA
Abstract

DNA microarrays have proved to be one of the vital breakthrough technologies for exploring the patterns of gene expression on a global scale. The differential measured gene-expression levels depend largely on the probe intensities extracted during microarray image processing. Various noises introduced during the experiment and the imaging process can drastically influence the accuracy of results. Microarray image denoising is one of the challenging pre-processing steps in microarray image analysis. In this paper, we propose denoising of microarray images using the independent component analysis (ICA). The idea of ICA i.e. finding the linear representation of nongaussian data so that the components are independent (or atleast as independent as possible) is exploited for denoising microarray images. Through examples, it is shown that the proposed approach is highly effective as compared to the conventional discrete wavelet transform and statistical methods.

References
  1. Bell A. J. and Sejnowski T. J. 1995. An information maximization approach to blind separation and blind deconvolution. Neural Computation. Vol. 7, 1129-1159.
  2. Bell A. J., and Sejnowski T. J. 1997. The independent components of natural scene are edge filters. Vision Research. Vol. 37, 3327-3338.
  3. Chen, Y., Dougherty, E. R. and Bittner, M. L. 1997. Ratio-based decision and the quantitative analysis of cDNA microarray images. J. Biomed. Optics. 364-374.
  4. Comon P., 1994. Independent component analysis - a new concept? Signal Processing, vol. 36, 287-314.
  5. Donoho, D. L. 1995. De-noising by soft-thresholding. IEEE Trans. Inform. Theory, Vol. 41, 613-627.
  6. Donoho, D. L. 1995. Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association. Vol. 90, 1200-1224.
  7. Dror, R., Murnick, J. and Rinaldi, N. 2002. A bayesian approach to transcript estimation from gene array data: The BEAM technique. Int. Conf. on Research in Computational Molecular Biology. (Washington, USA, April 18-21, 2002) 137-143.
  8. Ermolaeva, O., et. al. 1998. Data management and analysis for gene expression arrays. Nature Genetics. Vol 20, 19-23.
  9. The FastICA MATLAB package. 1998. Available at http://www.cis.hut.fi/projects/ica/fastica/
  10. Hoyer P. 1999. Independent component Analysis in image denoising. Master's Thesis. Helsinki University of Technology.
  11. Hyvärinen A. and Oja E. 1997. A fixed-point algorithm for independent component analysis. Neural Computation, vol. 9, 1483-1492.
  12. Hyvärinen A. 1999. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. on Neural Networks, vol. 10, 624-634.
  13. Hyvärinen A. 1999. Sparse code shrinkage: Denoising of nongaussian data by maximum likelihood estimation. Neural Computation, vol. 11, 1739-1768.
  14. Hyvärinen A., et. al. 2000. Image denoising by sparse code shrinkage. Intelligent Signal Processing, IEEE press.
  15. Hyvärinen A., and Oja E. 2000. Independent component analysis: algorithms and applications. Neural Networks. Vol. 13, 411-430.
  16. Kerr M. K., Martin M., and Churchill G. A. 2001. Analysis of variance for gene expression microarray data. Journal of Computational Biology, vol. 7, 819-837.
  17. Lonnstedt, I. and Speed, T. 2002. Replicated microarray data. Statistica Sinica. Vol. 12, 31-46.
  18. Mastriani, M. and Giraldez, A. 2006. Microarrays denoising via smoothing of coefficients in wavelet domain. International Journal of Biomedical Sciences. Vol. 1, 7-14.
  19. Newton, M. A., et. al. 2001. On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology. Vol. 8, 37-52.
  20. Olmos, A. and Kingdom, F. A. A. 2004. McGill Calibrated Color Images Database. http://tabby.vision.mcgill.ca/
  21. Schena, M. 2002. Microarray Analysis. New York: John Wiley&Sons.
  22. Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology. Vol. 98, 503-517.
  23. Stone, J. 2004. Independent component analysis: A Tutorial. MIT Press.
Index Terms

Computer Science
Information Sciences

Keywords

Denoising independent component analysis microarray image shrinkage function white Gaussian noise