
International Journal of Computer Applications (0975 – 8887)

Volume 27– No.5, August 2011

27

Mining Frequent Itemsets by using Binary Search
Tree Approach

 CH.M.H.Saibaba Dr. Rekha Redamalla
 Assistant Professor, Professor of Computer Science & Principal,
 Department of CSE & IT, Bhoj Reddy College of Engineering for Women

 Aryabhata Institute of Technology & Science, Vinay Nagar Colony, Saidabad,
 Mohabatnagar, Hyderabad, Hyderabad,

ABSTRACT
Data Mining is the process of extracting hidden patterns from
data. Finding frequent itemsets is computationally the most

expensive step in association rule discovery . The Efficient

Hashing Tree (EHT) algorithm is even faster than Apriori and

FP- growth algorithms. Its drawback is however, that the time

needed to build a compact tree and the memory requirement
depends upon the number of frequent 2 – itemsets. [1]

The above drawbacks are rectified by using Binary Search Tree

(BST) algorithm. By using this approach we can construct a

binary search tree very quickly by considering the frequent

itemsets. This algorithms works well for 1–itemset, 2–itemsets,
3–itemsets and more than 3–itemsets. By using this approach it

requires very less memory requirement for mining frequent

itemsets.

1. INTRODUCTION

Data mining commonly involves four classes of task:

Classification - Arranges the data into predefined groups. For
example an email program might attempt to classify an email as

legitimate or spam. Common algorithms include nearest

neighbor, Naive Bayes classifier and neural network.

Clustering - Is like classification but the groups are not

predefined, so the algorithm will try to group similar items
together.

Regression - Attempts to find a function which models the data

with the least error. A common method is to use Genetic

Programming.

Association rule learning - Searches for relationships between
variables. For example a supermarket might gather data of what

each customer buys. Using association rule learning, the

supermarket can work out what products are frequently bought

together, which is useful for marketing purposes. This is

sometimes referred to as "market basket analysis".

2. TECHNICAL DETAILS
Decision trees: Tree-shaped structures that represent sets of
decisions. These decisions generate rules for the classification of

a dataset. Specific decision tree methods include Classification

and Regression Trees (CART) and Chi Square Automatic

Interaction Detection (CHAID).

Genetic algorithms: Optimization techniques that use process
such as genetic combination, mutation, and natural selection in a

design based on the concepts of evolution.

Rule induction: The extraction of useful if-then rules from data

based on statistical significance. These capabilities are now

evolving to integrate directly with industry -standard data

warehouse and OLAP platforms.

2.1 Architecture of Data Mining
To best apply the advanced techniques, they must be fully

integrated with a data warehouse as well as flexible interactive

business analysis tools. Many data mining tools currently
operate outside of the warehouse, requiring extra steps for

extracting, importing, and analyzing the data. The resulting

analytic data warehouse can be applied to improve business

processes throughout the organization, in areas such as

promotional campaign management, fraud detection, and new
product rollout. Figure 1 illustrates architecture for advanced

analysis in a large data warehouse.

Figure 1 - Integrated Data Mining Architecture

The ideal starting point is a data warehouse containing a

combination of internal data tracking all customer contact
coupled with external market data about competitor activity.

Background information on potential customers also provides an

excellent basis for prospecting. This warehouse can be

implemented in a variety of relational database systems: Sybase,

Oracle, Redbrick, and so on, and should be optimized for
flexible and fast data access.

A wide range of companies have deployed successful

applications of data mining. While early adopters of this

technology have tended to be in information-intensive industries

such as financial services and direct mail marketing, the
technology is applicable to any company looking to leverage a

large data warehouse to better manage their customer

relationships.

http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Nearest_neighbor_(pattern_recognition)
http://en.wikipedia.org/wiki/Nearest_neighbor_(pattern_recognition)
http://en.wikipedia.org/wiki/Naive_Bayes_classifier
http://en.wikipedia.org/wiki/Artificial_neural_networks
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Genetic_Programming
http://en.wikipedia.org/wiki/Genetic_Programming
http://en.wikipedia.org/wiki/Association_rule_learning

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.5, August 2011

28

3. RELATED WORK
Discovery of interesting association relationships among huge

amounts of data will help marketing, decision making and

business management. Association rule mining is a widely used

technique for large – scale data mining, which can be simply

defined as a process of finding interesting patterns and trends
from a given data. [1]

There are two main strategies for mining frequent itemsets: the

candidate generation and test approach and the pattern growth

approach. Apriori and its several variations belong to the first

approach, while FP – growth and H – mine are examples of the
second. Apriori algorithms suffer from the problem spending

much of their time to discard the infrequent candidates on each

level. Another problem can be the high I/O cost which is

inseparable from the level – wise approach. In case of Apriori

algorithm the database is accessed as many times as the size of
the maximal frequent itemset is. This problem is partly

overcome by algorithms based on pattern growth.

The FP–growth (Frequent Pattern – growth) algorithm differs

basically from the level – wise algorithms, that use a “candidate

generate and test” approach. It does not use candidates at all, but
it compresses the database into the memory in a form of a so –

called FP – tree using a pruning technique. The patterns are

discovered using a recursive pattern growth method by creating

and processing conditional FP – trees. The drawback of the

algorithm is its huge memory requirement which is dependent
on the minimum support threshold and on the number and length

of the transactions. [1]

A new algorithm EHT (Efficient Hashing Tree – based) for

mining complete frequent itemsets directly from the database.

Mining of FP – tree structure is done recursively by building
conditional trees that are of the same order of magnitude in

number as the frequent patterns, but mining the EHT structure is

done recursively by building conditional trees that are of less

order of magnitude in number as the frequent patterns. [2]

Association rule mining is a very popular data mining technique
and it finds relationships among the different entities of records

(for example transaction records). Since the introduction of

frequent itemsets in 1993 by Agrawal et al. It has received a

great deal of attention in the field of knowledge discovery and

data mining. [3] The problem of association rules mining was
introduced in as well. This algorithm was improved later to

obtain the Apriori algorithm.

Many variants of the Apriori algorithm have been developed,

such as AprioriTid, ArioriHybrid, Direct Hashing and Pruning

(DHP), Dynamic Itemset Counting (DIC), Partition algorithm,
etc. A variant of FP-growth is the H-mine algorithm. It uses

array-based and trie-based data structures to deal with sparse

and dense datasets respectively. PatriciaMine employs a

compressed Patricia trie to store the datasets. [4] FP-growth uses

an array technique to reduce the FP-tree traversal time. Eclat is
the first algorithm to find frequent patterns by a depth-first

search and it has been shown to perform well. It uses a vertical

database representation and counts the itemset supports using

the intersection of tids. However, because of the depth-first

search, pruning used in the Apriori algorithm is not applicable
during the candidate itemsets generation. [5] VIPER and Mafia

also use the vertical database layout and the intersection to

achieve a good performance. However, their compression

scheme has limitations especially when tids are uniformly
distributed. Zaki and Gouda developed a new approach called
Eclat using the vertical database representation. [6]

4. METHODOLOGY
In Binary Search Tree (BST) approach, the frequent itemsets are

arranged depending upon the occurrences of itemsets. In this

approach the frequent itemsets are arranged in form of the nodes

with the technique of binary search tree. The binary search tree

is built by considering the 1 – itemset, 2 – itemsets, 3 –
itemsets and more than 3 – itemsets. The starting node is

constructed and later on if the next node occurrence is more than

the root node then it will be arranged on the right side of the root

node. If the next node is less than the root node then it will be

arranged on the left side of the root node. The different binary
search trees are constructed depending upon the itemsets.

The different binary search trees are constructed for 1 –

itemsets, 2 – itemsets, 3 – itemsets and more than 3 –

itemsets. By using this binary search tree approach for mining

the frequent itemsets in data mining, it will take very less
memory space for storing the information of nodes in the binary

search tree. Another advantage of binary search tree approach

for mining the frequent itemsets is that we can identify an

itemset which has occurred for many times very quickly without

any loss of time. Another important advantage of this binary
search tree approach we can search an itemset very quickly.

This approach will take very less time complexity for

constructing the binary search tree by considering the itemsets.

By considering the itemsets and itemsets are arranged in the

form of binary search tree.
Let us consider the 1 - itemsets I1 as 2, I2 as 3, I3 as 4, I4 as 1,

I5 as 6 and I6 as 2 occurrences. Then Binary Search Tree

approach can be implemented in the following manner:

Figure – 2 Binary Search Tree for 1 – itemsets

Let us consider the 2 – itemsets as I1,I2 as 3, I2,I3 as 4, I3,I4 as

5, I4,I5 as 6, I5,I6 as 7, I3, I5 as 2 occurrences, then the
approach can be implemented in the following manner:

Figure – 3 Binary Search Tree for 2 - itemsets
The following algorithm is used for constructing the binary

search tree for mining the frequent itemsets in data mining:

Procedure BST (Tree, Node)

Add first node of the binary tree to H;

For each 2-itemset entry (top down order) in binary tree do
If BST (I) >= Root, then

Create a link to the second tree of binary tree2

End procedure

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.5, August 2011

29

Procedure buildsubstree (N)

Add first node of Binary Tree to N;

Create a new node for this Binary Tree;
Create a link to the second node of Binary Tree;

End procedure

5. PERFORMANCE AND ANALYSIS
The proposed Binary Search Tree (BST) approach for mining

the frequent itemsets is so efficient when we compare with other
approaches like Apriori, Apriori TID, Frequent Pattern – Growth

(FP–Growth); Efficient Hashing Tree (EHT) based algorithms.

By using Binary Search Tree approach for mining frequent

itemsets is very quicker and occupies very less memory space

for storing the itemsets values. The execution time of the Binary
Search Tree method is always smaller than that of the Apriori,

Apriori TID, FP-growth and Efficient Hashing Tree based

algorithms.

It can be easily concluded that the execution time dependency of

the Apriori algorithm on the number of transactions is linear.
FP-growth algorithm reads the database twice and stores the

database in the form of a tree in the main memory. The memory

requirement of the Binary Search Tree algorithm depends only

on the number of frequent number of itemsets in the given

transactions. Since Binary Search Tree algorithm stores only the
items needed for finding frequent 2-itemsets which are then used

to form a tree in the main memory, the memory requirement of

the Binary search tree algorithm does not depend on the number

of transactions.

We can compare the different concepts of algorithms for mining
the frequent itemsets in following manner.

Figure -4 Comparisons of different algorithms in view of

time of mining frequent itemsets

In the above graph, the comparison of the Frequent – Pattern
Growth, Efficient Hashing Tree based approach and Binary

Search Tree approaches are compared. It can be noticed that the

Binary Search Tree approach will take very less time for mining

the frequent itemsets. For mining the frequent itemsets by using

FP – Growth and EHT it takes maximum time (in Seconds)
where as by using Binary Search Tree Approach it will takes

very less time for mining the frequent itemsets. For mining 1 –

itemsets it takes very less time, in the same way for FP Growth

and EHT it will average time for the mining the frequent

itemsets. For mining the 2 – itemsets, FP – Growth and EHT is
taking a few seconds but whereas the same 2 – itemsets can be

mined very quickly by using the Binary Search Tree approach.

Similarly for mining the 3 – itemsets and more 3 – itemsets, it

takes very large time for mining the frequent itemsets by using

FP – Growth and EHT algorithm.

Figure -5 Comparisons of different algorithms in view of

space for mining frequent itemsets
The above graph represents mining the frequent itemsets by

using Frequent Pattern Growth (FP – Growth), Efficient

Hashing Tree (EHT) and Binary Search Tree algorithms. Binary
Search Tree approach will takes occupies very less space when

we compare with Frequent Pattern Growth and Efficient

Hashing Tree based algorithms. For mining the frequent

itemsets, FP–Growth approach, EHT algorithm is occupying a

very large space in memory for mining the frequent itemsets.
The Binary Search Tree Approach is taking very less space for

mining the frequent itemsets.

6. CONCLUSION
Binary Search Tree (BST) algorithms is implemented for

Mining the Frequent itemsets. The Binary Search Tree algorithm

is implemented for mining the 1 – itemsets, 2 – itemsets, 3 –

itemsets and more than 3 – itemsets. The Binary Search Tree

algorithm is useful for mining the frequent itemsets. The
proposed system is implemented and tested on large data sets

and it is useful for the applications wherever the itemsets are

regularly utilised.

7. FUTURE WORK
The algorithm and implementations are further extended to

much wider domain of problems such as e – commerce, network

intrusion detection, anti – spam, E mail etc.,
For solving the duplication of itemsets, the analysis of algorithm

is extended to Separate Chaining Technique in order to

overcome the duplication of itemsets.

8. REFERENCES
[1] A.V. Senthil Kumar and R.S.D. Wahidabanu, “Mining

Frequent Itemsets: Efficient Hashing and Tree Based

Approach”, International Journal of Computer Science and

Software Technology (IJCSST), Vol 1, No.1, January –

June 2008, pp 1 – 5.

[2] Mingjun Song and Sanguthevar Rajasekaran, Member,
IEEE, “A Transaction Mapping Algorithm for Frequent

Itemsets Mining”, IEEE Transactions on Knowledge and

Data Engineering, pp 1 – 4.

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.5, August 2011

30

[3] Sara Ansari and Mohammad Hadi Sadreddini, “An Efficient

Approach to Mining Frequent Itemsets on Data Streams”,

Proceedings of World Academy of Science, Engineering
and Technology, Volume 37, January 2009, pp 489 – 492.

[4] Karam Gouda and Mohammed J Zaki, “Efficiently Mining

Maximal Frequent Itemsets”, pp 1 – 4.

[5] Ruoming Jin and Gagan Agarwal, “An Algorithm for In –

Core Frequent Itemset Mining on Streaming Data”, pp 1 –

4.

[6] Azzam Sleit, Wesam AlMobaideen, Aladdin H. Baarah and

Adel H, Abusitta, “An Efficient Pattern Matching

Algorithm”, Journal of Applied Sciences 7 (18), 2691 –

2695, 2007, pp 2691 – 2693.

